Wei Lu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823954/publications.pdf

Version: 2024-02-01

493 papers 31,785 citations

74 h-index

9264

164 g-index

502 all docs 502 docs citations

502 times ranked 37708 citing authors

#	Article	IF	Citations
1	Improved Synthesis of Graphene Oxide. ACS Nano, 2010, 4, 4806-4814.	14.6	10,035
2	Observation of conducting filament growth in nanoscale resistive memories. Nature Communications, 2012, 3, 732.	12.8	957
3	Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics. Advanced Materials, 2015, 27, 6575-6581.	21.0	722
4	High-Density Crossbar Arrays Based on a Si Memristive System. Nano Letters, 2009, 9, 870-874.	9.1	507
5	Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Science Advances, 2017, 3, e1700589.	10.3	419
6	Surface Plasmonâ€Enhanced Photodetection in Few Layer MoS ₂ Phototransistors with Au Nanostructure Arrays. Small, 2015, 11, 2392-2398.	10.0	359
7	Exceptional catalytic effects of black phosphorus quantum dots in shuttling-free lithium sulfur batteries. Nature Communications, 2018, 9, 4164.	12.8	304
8	Design of Hierarchical NiCo@NiCo Layered Double Hydroxide Core–Shell Structured Nanotube Array for Highâ€Performance Flexible Allâ€Solidâ€State Batteryâ€Type Supercapacitors. Advanced Functional Materials, 2017, 27, 1605307.	14.9	294
9	Unipolar barrier photodetectors based on van der Waals heterostructures. Nature Electronics, 2021, 4, 357-363.	26.0	292
10	Highly ordered iron oxide nanotube arrays as electrodes for electrochemical energy storage. Electrochemistry Communications, 2011, 13, 657-660.	4.7	286
11	Controlled Synthesis of 2D Palladium Diselenide for Sensitive Photodetector Applications. Advanced Functional Materials, 2019, 29, 1806878.	14.9	286
12	Single InAs Nanowire Room-Temperature Near-Infrared Photodetectors. ACS Nano, 2014, 8, 3628-3635.	14.6	238
13	Recent Progress on Localized Field Enhanced Twoâ€dimensional Material Photodetectors from Ultraviolet—Visible to Infrared. Small, 2017, 13, 1700894.	10.0	234
14	Nanoscale resistive switching devices: mechanisms and modeling. Nanoscale, 2013, 5, 10076.	5.6	232
15	Nitrogen-Doped Carbon for Sodium-Ion Battery Anode by Self-Etching and Graphitization of Bimetallic MOF-Based Composite. CheM, 2017, 3, 152-163.	11.7	228
16	Superior Potassium Ion Storage via Vertical MoS ₂ "Nanoâ€Rose―with Expanded Interlayers on Graphene. Small, 2017, 13, 1701471.	10.0	221
17	Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution Catalysis. Journal of the American Chemical Society, 2019, 141, 8136-8145.	13.7	220
18	Arrayed Van Der Waals Broadband Detectors for Dualâ€Band Detection. Advanced Materials, 2017, 29, 1604439.	21.0	218

#	Article	IF	CITATIONS
19	Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn ²⁺ Doping. Advanced Functional Materials, 2014, 24, 4051-4059.	14.9	213
20	High efficiency and fast van der Waals hetero-photodiodes with a unilateral depletion region. Nature Communications, 2019, 10, 4663.	12.8	213
21	Tunable Blue-Green-Emitting Ba ₃ LaNa(PO ₄) ₃ F:Eu ²⁺ ,Tb ³⁺ Phosphor with Energy Transfer for Near-UV White LEDs. Inorganic Chemistry, 2013, 52, 10340-10346.	4.0	204
22	Palladium Diselenide Long-Wavelength Infrared Photodetector with High Sensitivity and Stability. ACS Nano, 2019, 13, 2511-2519.	14.6	198
23	Giant Electric Energy Density in Epitaxial Leadâ€Free Thin Films with Coexistence of Ferroelectrics and Antiferroelectrics. Advanced Electronic Materials, 2015, 1, 1500052.	5.1	195
24	Ultrafine Sulfur Nanoparticles in Conducting Polymer Shell as Cathode Materials for High Performance Lithium/Sulfur Batteries. Scientific Reports, 2013, 3, 1910.	3.3	193
25	Hierarchical Porous Plasmonic Metamaterials for Reproducible Ultrasensitive Surfaceâ€Enhanced Raman Spectroscopy. Advanced Materials, 2015, 27, 1090-1096.	21.0	193
26	Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm. NPG Asia Materials, 2018, 10, 352-362.	7.9	187
27	Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Progress in Polymer Science, 2019, 95, 1-31.	24.7	186
28	Large Energy Storage Density and High Thermal Stability in a Highly Textured (111)-Oriented Pb _{0.8} Ba _{0.2} ZrO ₃ Relaxor Thin Film with the Coexistence of Antiferroelectric and Ferroelectric Phases. ACS Applied Materials & Samp; Interfaces, 2015, 7, 13512-13517.	8.0	185
29	A Novel Efficient Mn ⁴⁺ Activated Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ Phosphor: Application in Red-Emitting and White LEDs. Inorganic Chemistry, 2014, 53, 11985-11990.	4.0	179
30	Direct TEM observations of growth mechanisms of two-dimensional MoS2 flakes. Nature Communications, 2016, 7, 12206.	12.8	179
31	Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature. Advanced Materials, 2014, 26, 8203-8209.	21.0	168
32	Tunable Color of Ce ³⁺ /Tb ³⁺ /Mn ²⁺ -Coactivated CaScAlSiO ₆ via Energy Transfer: A Single-Component Red/White-Emitting Phosphor. Inorganic Chemistry, 2013, 52, 3007-3012.	4.0	165
33	Toward Dendrite-Free Lithium Deposition via Structural and Interfacial Synergistic Effects of 3D Graphene@Ni Scaffold. ACS Applied Materials & Samp; Interfaces, 2016, 8, 26091-26097.	8.0	152
34	Highly sensitive solar-blind deep ultraviolet photodetector based on graphene/PtSe2/β-Ga2O3 2D/3D Schottky junction with ultrafast speed. Nano Research, 2021, 14, 1973-1979.	10.4	152
35	Ferroelectricâ€Enhanced Polysulfide Trapping for Lithium–Sulfur Battery Improvement. Advanced Materials, 2017, 29, 1604724.	21.0	149
36	Anisotropic Broadband Photoresponse of Layered Typeâ€II Weyl Semimetal MoTe ₂ . Advanced Materials, 2018, 30, e1707152.	21.0	139

#	Article	IF	CITATIONS
37	When Nanowires Meet Ultrahigh Ferroelectric Field–High-Performance Full-Depleted Nanowire Photodetectors. Nano Letters, 2016, 16, 2548-2555.	9.1	135
38	Visible Light-Assisted High-Performance Mid-Infrared Photodetectors Based on Single InAs Nanowire. Nano Letters, 2016, 16, 6416-6424.	9.1	134
39	Porous platinum nanowire arrays for direct ethanolfuel cell applications. Chemical Communications, 2009, , 195-197.	4.1	131
40	Sr ₃ GdNa(PO ₄) ₃ F:Eu ²⁺ ,Mn ²⁺ : a potential color tunable phosphor for white LEDs. Journal of Materials Chemistry C, 2014, 2, 90-97.	5 . 5	130
41	Na ₃ V ₂ (PO ₄) ₂ F ₃ @C dispersed within carbon nanotube frameworks as a high tap density cathode for high-performance sodium-ion batteries. Journal of Materials Chemistry A, 2018, 6, 6007-6014.	10.3	129
42	Dual-modal upconversion fluorescent/X-ray imaging using ligand-free hexagonal phase NaLuF4:Gd/Yb/Er nanorods for blood vessel visualization. Biomaterials, 2014, 35, 2934-2941.	11.4	128
43	Tailoring Anisotropic Li-Ion Transport Tunnels on Orthogonally Arranged Li-Rich Layered Oxide Nanoplates Toward High-Performance Li-Ion Batteries. Nano Letters, 2017, 17, 1670-1677.	9.1	128
44	Graphene/Sulfur Hybrid Nanosheets from a Spaceâ€Confined "Sauna―Reaction for Highâ€Performance Lithium–Sulfur Batteries. Advanced Materials, 2015, 27, 5936-5942.	21.0	124
45	Highâ€Sensitivity Floatingâ€Cate Phototransistors Based on WS ₂ and MoS ₂ . Advanced Functional Materials, 2016, 26, 6084-6090.	14.9	124
46	AsP/InSe Van der Waals Tunneling Heterojunctions with Ultrahigh Reverse Rectification Ratio and High Photosensitivity. Advanced Functional Materials, 2019, 29, 1900314.	14.9	121
47	Blackbody-sensitive room-temperature infrared photodetectors based on low-dimensional tellurium grown by chemical vapor deposition. Science Advances, 2021, 7, .	10.3	121
48	Crystal Structure and Luminescence Properties of Ca ₈ Mg ₃ Al ₂ Si ₇ O ₂₈ :Eu ²⁺ for WLEDs. Advanced Optical Materials, 2014, 2, 183-188.	7.3	120
49	pH-responsive poly (acrylic acid)-gated mesoporous silica and its application in oral colon targeted drug delivery for doxorubicin. Colloids and Surfaces B: Biointerfaces, 2017, 154, 287-296.	5.0	119
50	Remarkable NIR Enhancement of Multifunctional Nanoprobes for In Vivo Trimodal Bioimaging and Upconversion Optical/T ₂ â€Weighted MRIâ€Guided Small Tumor Diagnosis. Advanced Functional Materials, 2015, 25, 7119-7129.	14.9	115
51	Interfacial Properties of Polymer Nanocomposites: Role of Chain Rigidity and Dynamic Heterogeneity Length Scale. Macromolecules, 2017, 50, 2397-2406.	4.8	115
52	Temperature sensing based on the up-conversion emission of Tm3+ in a single KLuF4 microcrystal. Journal of Alloys and Compounds, 2017, 728, 1037-1042.	5 . 5	112
53	Dynamic metamaterial based on the graphene split ring high-Q Fano-resonnator for sensing applications. Nanoscale, 2016, 8, 15196-15204.	5.6	110
54	Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co ₃ O ₄ @polypyrrole core–shell nanorod bundle array electrodes. Journal of Materials Chemistry A, 2018, 6, 19058-19065.	10.3	110

#	Article	IF	CITATIONS
55	Tunable active edge sites in PtSe2 films towards hydrogen evolution reaction. Nano Energy, 2017, 42, 26-33.	16.0	109
56	Highâ€Performance Ferroelectric Polymer Sideâ€Gated CdS Nanowire Ultraviolet Photodetectors. Advanced Functional Materials, 2016, 26, 7690-7696.	14.9	107
57	Melting behavior in ultrathin metallic nanowires. Physical Review B, 2002, 66, .	3.2	105
58	Phononâ€Assisted Population Inversion in Lanthanideâ€Doped Upconversion Ba ₂ LaF ₇ Nanocrystals in Glassâ€Ceramics. Advanced Materials, 2016, 28, 8045-8050.	21.0	104
59	Rational Design of Multifunctional Fe@γâ€Fe ₂ O ₃ @Hâ€TiO ₂ Nanocomposites with Enhanced Magnetic and Photoconversion Effects for Wide Applications: From Photocatalysis to Imagingâ€Guided Photothermal Cancer Therapy. Advanced Materials, 2018, 30, e1706747.	21.0	102
60	Tetra-heteroatom self-doped carbon nanosheets derived from silkworm excrement for high-performance supercapacitors. Journal of Power Sources, 2018, 379, 74-83.	7.8	101
61	Engineering hetero-epitaxial nanostructures with aligned Li-ion channels in Li-rich layered oxides for high-performance cathode application. Nano Energy, 2017, 35, 271-280.	16.0	99
62	PtTe ₂ â€Based Typeâ€N Dirac Semimetal and Its van der Waals Heterostructure for Sensitive Room Temperature Terahertz Photodetection. Small, 2019, 15, e1903362.	10.0	98
63	Tungsten diselenide for all-fiber lasers with the chemical vapor deposition method. Nanoscale, 2018, 10, 7971-7977.	5.6	94
64	Broadband Anisotropic Photoresponse of the "Hydrogen Atom―Version Type-II Weyl Semimetal Candidate TalrTe ₄ . ACS Nano, 2018, 12, 4055-4061.	14.6	94
65	Artificial Structural Colors and Applications. Innovation(China), 2021, 2, 100081.	9.1	92
66	Toward Sensitive Roomâ€Temperature Broadband Detection from Infrared to Terahertz with Antennaâ€Integrated Black Phosphorus Photoconductor. Advanced Functional Materials, 2017, 27, 1604414.	14.9	88
67	Imaging of nonlocal hot-electron energy dissipation via shot noise. Science, 2018, 360, 775-778.	12.6	85
68	Design of a luminescence pattern via altering the crystal structure and doping ions to create warm white LEDs. Chemical Communications, 2014, 50, 2635.	4.1	79
69	Synergistic Dual-Modality <i>in Vivo</i> Upconversion Luminescence/X-ray Imaging and Tracking of Amine-Functionalized NaYbF ₄ :Er Nanoprobes. ACS Applied Materials & Amp; Interfaces, 2014, 6, 3839-3846.	8.0	79
70	Real-Time Observation of the Electrode-Size-Dependent Evolution Dynamics of the Conducting Filaments in a SiO ₂ Layer. ACS Nano, 2017, 11, 4097-4104.	14.6	79
71	Highly Sensitive Gas Sensor by the LaAlO ₃ /SrTiO ₃ Heterostructure with Pd Nanoparticle Surface Modulation. Advanced Materials, 2014, 26, 5962-5968.	21.0	78
72	Commercial Dacron cloth supported Cu(OH) < sub>2 < /sub> nanobelt arrays for wearable supercapacitors. Journal of Materials Chemistry A, 2016, 4, 14781-14788.	10.3	78

#	Article	IF	CITATIONS
73	Iron supported C@Fe3O4 nanotube array: a new type of 3D anode with low-cost for high performance lithium-ion batteries. Journal of Materials Chemistry, 2012, 22, 5560.	6.7	77
74	High-Polarization-Discriminating Infrared Detection Using a Single Quantum Well Sandwiched in Plasmonic Micro-Cavity. Scientific Reports, 2014, 4, 6332.	3.3	77
75	Simultaneous synthesis and amine-functionalization of single-phase BaYF5:Yb/Er nanoprobe for dual-modal in vivo upconversion fluorescence and long-lasting X-ray computed tomography imaging. Nanoscale, 2013, 5, 6023.	5.6	76
76	Anisotropic ultrasensitive PdTe ₂ -based phototransistor for room-temperature long-wavelength detection. Science Advances, 2020, 6, .	10.3	74
77	High Temperature Crystallization of Freeâ€Standing Anatase TiO ₂ Nanotube Membranes for High Efficiency Dyeâ€Sensitized Solar Cells. Advanced Functional Materials, 2013, 23, 5952-5960.	14.9	73
78	Ultrasensitive Roomâ€Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator. Advanced Functional Materials, 2018, 28, 1801786.	14.9	73
79	Visible to near-infrared photodetectors based on MoS ₂ vertical Schottky junctions. Nanotechnology, 2017, 28, 484002.	2.6	73
80	Epitaxial Synthesis of Monolayer PtSe ₂ Single Crystal on MoSe ₂ with Strong Interlayer Coupling. ACS Nano, 2019, 13, 10929-10938.	14.6	72
81	Substrate orientation-induced epitaxial growth of face centered cubic Mo ₂ C superconductive thin film. Journal of Materials Chemistry C, 2017, 5, 10822-10827.	5.5	71
82	Mid-infrared polarization-controlled broadband achromatic metadevice. Science Advances, 2020, 6, .	10.3	71
83	Site Occupation and Luminescence of Novel Orange-Red Ca ₃ M ₂ Ge ₃ O ₁₂ :Mn ²⁺ ,Mn ⁴⁺ (M) T	'j 6. TQq1 1	. 0. Ø84314
84	Aqueous Manganese Dioxide Ink for Paperâ€Based Capacitive Energy Storage Devices. Angewandte Chemie - International Edition, 2015, 54, 6800-6803.	13.8	69
85	Tunable and high-sensitivity sensing based on Fano resonance with coupled plasmonic cavities. Scientific Reports, 2017, 7, 10639.	3.3	68
86	Self-rolling and light-trapping in flexible quantum well–embedded nanomembranes for wide-angle infrared photodetectors. Science Advances, 2016, 2, e1600027.	10.3	65
87	Multiple channeled phenomena in heterostructures with defects mode. Applied Physics Letters, 2004, 84, 1629-1631.	3.3	64
88	Dependence of Ion-Implant-Induced LBIC Novel Characteristic on Excitation Intensity for Long-Wavelength HgCdTe-Based Photovoltaic Infrared Detector Pixel Arrays. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 1-7.	2.9	64
89	Droop improvement in blue InGaN/GaN multiple quantum well light-emitting diodes with indium graded last barrier. Applied Physics Letters, 2011, 99, .	3.3	63
90	Facile synthesis of a mechanically robust and highly porous NiO film with excellent electrocatalytic activity towards methanol oxidation. Nanoscale, 2016, 8, 11256-11263.	5.6	63

#	Article	IF	CITATIONS
91	Enhancing Luminescence and Controlling the Mn Valence State of Gd ₃ Ga _{5â€"⟨i⟩xAl⟨sub>⟨i⟩xAl⟨sub⟩⟨i⟩xPhosphors by the Design of the Garnet Structure. ACS Applied Materials & Applie}	Mn 8.8	62
92	Broadband Yellowish-Green Emitting Ba ₄ Gd ₃ Na ₃ (PO ₄) ₆ F ₂ :Eu ^{2+< Phosphor: Structure Refinement, Energy Transfer, and Thermal Stability. Inorganic Chemistry, 2016, 55, 6107-6113.}	/sup>	59
93	Large-area highly crystalline WSe_2 atomic layers for ultrafast pulsed lasers. Optics Express, 2017, 25, 30020.	3.4	59
94	2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 68.	16.6	59
95	Controllable Doping in 2D Layered Materials. Advanced Materials, 2021, 33, e2104942.	21.0	59
96	Generation of orange and green emissions in Ca ₂ GdZr ₂ (AlO ₄) ₃ :Ce ³⁺ , Mn ²⁺ , Tb ³⁺ garnets via energy transfer with Mn ²⁺ and Tb ³⁺ as acceptors. Journal of Materials Chemistry C, 2015, 3, 2334-2340.	5 . 5	58
97	Sponge-like Ni(OH) _{2 < /sub>–NiF _{2 < /sub>composite film with excellent electrochemical performance. Physical Chemistry Chemical Physics, 2013, 15, 1601-1605.}}	2.8	57
98	Wavelengthâ€Tunable Midâ€Infrared Lasing from Black Phosphorus Nanosheets. Advanced Materials, 2020, 32, e1808319.	21.0	56
99	Study of gain and photoresponse characteristics for back-illuminated separate absorption and multiplication GaN avalanche photodiodes. Journal of Applied Physics, 2014, 115, .	2.5	55
100	PEGylated NaLuF4: Yb/Er upconversion nanophosphors for inÂvivo synergistic fluorescence/X-ray bioimaging and long-lasting, real-time tracking. Biomaterials, 2014, 35, 9689-9697.	11.4	55
101	Boosting the oxygen evolution reaction in non-precious catalysts by structural and electronicÂengineering. Journal of Materials Chemistry A, 2018, 6, 10253-10263.	10.3	54
102	Broadband Achromatic Metalens in Midâ€Wavelength Infrared. Laser and Photonics Reviews, 2021, 15, 2100020.	8.7	54
103	Broadband circular polarizers constructed using helix-like chiral metamaterials. Nanoscale, 2016, 8, 14725-14729.	5.6	53
104	Twin Engineering in Solutionâ€Synthesized Nonstoichiometric Cu ₅ FeS ₄ Icosahedral Nanoparticles for Enhanced Thermoelectric Performance. Advanced Functional Materials, 2018, 28, 1705117.	14.9	53
105	Structure and magnetic properties of Co-Cu bimetallic clusters. Physical Review B, 2002, 66, .	3.2	52
106	Highly Sensitive and Wide-Band Tunable Terahertz Response of Plasma Waves Based on Graphene Field Effect Transistors. Scientific Reports, 2014, 4, 5470.	3.3	52
107	Enabling effective polysulfide trapping and high sulfur loading via a pyrrole modified graphene foam host for advanced lithium–sulfur batteries. Journal of Materials Chemistry A, 2017, 5, 7309-7315.	10.3	52
108	Tunable white light of a Ce ³⁺ ,Tb ³⁺ ,Mn ²⁺ triply doped Na ₂ Ca ₃ Si ₂ O ₈ phosphor for high colour-rendering white LED applications: tunable luminescence and energy transfer. Dalton Transactions, 2017, 46, 9272-9279.	3.3	52

#	Article	lF	Citations
109	Facile Preparation of Double Rare Earth-Doped Carbon Dots for MRI/CT/FI Multimodal Imaging. ACS Applied Nano Materials, 2018, 1, 2544-2551.	5.0	50
110	Fermi surface and band renormalization of Sr1 \hat{a} ° xKxFe2As2 from angle-resolved photoemission spectroscopy. Physical Review B, 2008, 78, .	3.2	49
111	Wonotonic <mml:math display="inline" xmins:mml="http://www.w3.org/1998/Math/Math/Mill"><mml:mi>d</mml:mi></mml:math> -wave superconducting gap of the optimally doped <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mml="http: 1998="" display="inline" math="" mathml"="" www.w3.org=""><mml:mml= 1998="" display="inline" http:="" math="" mathml"="" www.w3.org=""><mml:mml= 1998="" http:="" math="" math<="" td="" www.w3.org=""><td>3.2 <td>49 ></td></td></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml=></mml:mml="http:></mml:mml="http:></mml:math>	3.2 <td>49 ></td>	49 >
112	Hydrothermal growth and optical properties of Nb ₂ O ₅ nanorod arrays. Journal of Materials Chemistry C, 2014, 2, 8185-8190.	5 . 5	49
113	Enhanced upconversion luminescence and single-band red emission of NaErF4 nanocrystals via Mn2+ doping. Journal of Alloys and Compounds, 2015, 618, 776-780.	5.5	49
114	A facile route to fabricate an anodic TiO2 nanotube–nanoparticle hybrid structure for high efficiency dye-sensitized solar cells. Nanoscale, 2012, 4, 5148.	5.6	48
115	Dark Current Transport and Avalanche Mechanism in HgCdTe Electron-Avalanche Photodiodes. IEEE Transactions on Electron Devices, 2015, 62, 1926-1931.	3.0	48
116	High-Speed Visible Light Communications: Enabling Technologies and State of the Art. Applied Sciences (Switzerland), 2018, 8, 589.	2.5	48
117	Multi-functional NaErF ₄ :Yb nanorods: enhanced red upconversion emission, in vitro cell, in vivo X-ray, and T ₂ -weighted magnetic resonance imaging. Nanoscale, 2014, 6, 2855-2860.	5.6	47
118	Giant and broadband circular asymmetric transmission based on two cascading polarization conversion cavities. Nanoscale, 2016, 8, 8189-8194.	5.6	47
119	Pixel-level plasmonic microcavity infrared photodetector. Scientific Reports, 2016, 6, 25849. Ultrafast relaxation dynamics of photoexcited Dirac fermions in the three-dimensional Dirac	3.3	47
120	semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:mi mathvariant="normal">C<mml:msub><mml:mi mathvariant="normal">d<mml:mn>3</mml:mn></mml:mi </mml:msub><mml:mi mathvariant="normal">A<mml:msub><mml:mi< td=""><td>3.2</td><td>47</td></mml:mi<></mml:msub></mml:mi </mml:mi </mml:mrow></mml:math>	3.2	47
121	mathvariant="normal">s <mml:mn>2</mml:mn> . Physi MoS2 nanosheet photodetectors with ultrafast response. Applied Physics Letters, 2017, 111, .	3.3	47
122	Hybrid WSe ₂ –In ₂ O ₃ Phototransistor with Ultrahigh Detectivity by Efficient Suppression of Dark Currents. ACS Applied Materials & Samp; Interfaces, 2017, 9, 34489-34496.	8.0	47
123	Accurate Simulation of Temperature-Dependent Dark Current in HgCdTe Infrared Detectors Assisted by Analytical Modeling. Journal of Electronic Materials, 2010, 39, 981-985.	2.2	46
124	Ultrafine Cobalt Sulfide Nanoparticles Encapsulated Hierarchical N-doped Carbon Nanotubes for High-performance Lithium Storage. Electrochimica Acta, 2017, 225, 137-142.	5.2	46
125	Terahertz probe of photoexcited carrier dynamics in the Dirac semimetal <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cd</mml:mi><mml:n .<="" 2018,="" 98,="" b,="" physical="" review="" td=""><td>nn3.3<td>nl:m=60></td></td></mml:n></mml:msub></mml:mrow></mml:math>	nn 3.3 <td>nl:m=60></td>	nl:m=60>
126	Ultrasensitive Mid-wavelength Infrared Photodetection Based on a Single InAs Nanowire. ACS Nano, 2019, 13, 3492-3499.	14.6	45

#	Article	IF	Citations
127	Hybrid luminescence materials assembled by [Ln(DPA)3]3â ⁻ and mesoporous host through ion-pairing interactions with high quantum efficiencies and long lifetimes. Scientific Reports, 2015, 5, 8385.	3.3	44
128	Exploring Anomalous Polarization Dynamics in Organometallic Halide Perovskites. Advanced Materials, 2018, 30, 1705298.	21.0	44
129	Influencing Sources for Dark Current Transport and Avalanche Mechanisms in Planar and Mesa HgCdTe p-i-n Electron-Avalanche Photodiodes. IEEE Transactions on Electron Devices, 2018, 65, 572-576.	3.0	44
130	Strategy to Enhance the Luminescence of Lanthanide Ions Doped MgWO ₄ Nanosheets through Incorporation of Carbon Dots. Inorganic Chemistry, 2018, 57, 8662-8672.	4.0	44
131	Liquidâ€phase exfoliation of violet phosphorus for electronic applications. SmartMat, 2021, 2, 226-233.	10.7	44
132	Efficiency enhancement of blue InGaN/GaN light-emitting diodes with an AlGaN-GaN-AlGaN electron blocking layer. Journal of Applied Physics, 2012, 111, .	2.5	43
133	Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix. Journal of Luminescence, 2018, 194, 433-439.	3.1	43
134	Bipolar Carrier Transfer Channels in Epitaxial Graphene/SiC Core–Shell Heterojunction for Efficient Photocatalytic Hydrogen Evolution. Advanced Materials, 2015, 27, 7986-7991.	21.0	42
135	Multi-color luminescence of uniform CdWO4nanorods through Eu3+ion doping. Journal of Materials Chemistry C, 2015, 3, 2865-2871.	5.5	42
136	<i>In situ</i> observation of the thermal stability of black phosphorus. 2D Materials, 2017, 4, 025001.	4.4	42
137	Room-Temperature Single-Photon Detector Based on Single Nanowire. Nano Letters, 2018, 18, 5439-5445.	9.1	42
138	Phase and Facet Control of Molybdenum Carbide Nanosheet Observed by In Situ TEM. Small, 2017, 13, 1700051.	10.0	41
139	Recent Progresses and Development of Advanced Atomic Layer Deposition towards High-Performance Li-Ion Batteries. Nanomaterials, 2017, 7, 325.	4.1	41
140	Optical temperature sensing properties of KLu2F7: Yb3+/Er3+/Nd3+ nanoparticles under NIR excitation. Journal of Alloys and Compounds, 2018, 742, 497-503.	5.5	41
141	(S)TEM study of different stages of Ti–45Al–8Nb–0.2W–0.2B–0.02Y alloy oxidation at 900°C. Corrosion Science, 2008, 50, 978-988.	6.6	40
142	Backside-illuminated infrared photoluminescence and photoreflectance: Probe of vertical nonuniformity of HgCdTe on GaAs. Applied Physics Letters, 2010, 96, 121915.	3.3	40
143	Urchin-like Ce/Tb co-doped GdPO ₄ hollow spheres for in vivo luminescence/X-ray bioimaging and drug delivery. Biomaterials Science, 2014, 2, 1404-1411.	5.4	39
144	High performance colored selective absorbers for architecturally integrated solar applications. Journal of Materials Chemistry A, 2015, 3, 7353-7360.	10.3	39

#	Article	IF	CITATIONS
145	Large-area, lithography-free, narrow-band and highly directional thermal emitter. Nanoscale, 2019, 11, 19742-19750.	5.6	39
146	Formation of stable fullerenelikeGanAsnclusters(6â%#â%\$): Gradient-corrected density-functional theory and a genetic global optimization approach. Physical Review B, 2006, 74, .	3.2	38
147	Controllable synthesis of Ln3+ (Ln = Tb, Eu) doped zinc phosphate nano-/micro-structured materials: phase, morphology and luminescence properties. Nanoscale, 2014, 6, 2137.	5.6	38
148	Mechanisms of infrared photoluminescence in HgTe/HgCdTe superlattice. Journal of Applied Physics, 2012, 112, 063512.	2.5	37
149	Structure and quality controlled growth of InAs nanowires through catalyst engineering. Nano Research, 2014, 7, 1640-1649.	10.4	37
150	Structure and photoluminescence properties of novel Ca2NaSiO4F:Re (Re = Eu2+, Ce3+, Tb3+) phosphors with energy transfer for white emitting LEDs. Journal of Materials Chemistry C, 2014, 2, 4304-4311.	5 . 5	37
151	Controllable in situ synthesis of epsilon manganese dioxide hollow structure/RGO nanocomposites for high-performance supercapacitors. Nanoscale, 2016, 8, 1854-1860.	5.6	37
152	Self-Assembly Growth of In-Rich InGaAs Core–Shell Structured Nanowires with Remarkable Near-Infrared Photoresponsivity. Nano Letters, 2017, 17, 7824-7830.	9.1	37
153	Energy transfer and color tunable emission in Tb3+,Eu3+ co-doped Sr3LaNa(PO4)3F phosphors. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2018, 190, 246-252.	3.9	37
154	High-frequency rectifiers based on type-II Dirac fermions. Nature Communications, 2021, 12, 1584.	12.8	37
155	A novel nanostructure and multiferroic properties in Pb(Zr _{0.52} Ti _{0.48})O ₃ /CoFe ₂ O ₄ nanocomposite films grown by pulsed-laser deposition. Journal Physics D: Applied Physics, 2008, 41, 235405.	2.8	36
156	High quality polyacrylic acid modified multifunction luminescent nanorods for tri-modality bioimaging, in vivo long-lasting tracking and biodistribution. Nanoscale, 2015, 7, 542-550.	5.6	36
157	Efficient sensitization of Mn2+ emission by Eu2+ in Ca12Al14O33Cl2 host under UV excitation. RSC Advances, 2013, 3, 16034.	3.6	35
158	Enhancing Photoluminescence Performance of SrSi _{O<}}}	0q0,00 rg	:BT_LOverlock
159	Ultrafast Thulium-Doped Fiber Laser Mode Locked by Monolayer WSe2. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-6.	2.9	35
160	Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light: Science and Applications, 2022, 11, 53.	16.6	35
161	Optimal number of quantum wells for blue InGaN/GaN light-emitting diodes. Applied Physics Letters, 2012, 100, 263504.	3.3	34
162	YF ₃ :Eu ³⁺ Micro-Single Crystals: Fine Morphological Tuning and Luminescence Properties. Crystal Growth and Design, 2013, 13, 3582-3587.	3.0	34

#	Article	IF	CITATIONS
163	Quality of epitaxial InAs nanowires controlled by catalyst size in molecular beam epitaxy. Applied Physics Letters, 2013, 103, .	3.3	34
164	Organic-free Anatase TiO2 Paste for Efficient Plastic Dye-Sensitized Solar Cells and Low Temperature Processed Perovskite Solar Cells. ACS Applied Materials & Samp; Interfaces, 2015, 7, 19431-19438.	8.0	34
165	All acrylic-based thermoplastic elastomers with high upper service temperature and superior mechanical properties. Polymer Chemistry, 2017, 8, 5741-5748.	3.9	34
166	Ni@NiO core/shell dendrites for ultra-long cycle life electrochemical energy storage. Journal of Materials Chemistry A, 2016, 4, 15049-15056.	10.3	33
167	High-temperature long persistent and photo-stimulated luminescence in Tb3+ doped gallate phosphor. Journal of Alloys and Compounds, 2017, 701, 774-779.	5.5	33
168	Emission Enhancement and Color Tuning for GdVO ₄ :Ln ³⁺ (Ln = Dy, Eu) by Surface Modification at Single Wavelength Excitation. Inorganic Chemistry, 2017, 56, 282-291.	4.0	33
169	The microscopic origin of magnon-photon level attraction by traveling waves: Theory and experiment. Physical Review B, 2019, 100, .	3.2	33
170	Highly entangled carbon nanoflakes on Li ₃ microrods for improved lithium storage performance. RSC Advances, 2013, 3, 1297-1301.	3.6	32
171	Morphology-Controlled Synthesis of Self-Assembled LiFePO ₄ /C/RGO for High-Performance Li-lon Batteries. ACS Applied Materials & Samp; Interfaces, 2014, 6, 17556-17563.	8.0	32
172	Novel Twoâ€Step Topotactic Transformation Synthetic Route Towards Monodisperse LnOF:Re, ^{3+ < /sup > (Ln = Y, Prâ€"Lu) Nanocrystals with Down/Upconversion Luminescence Properties. Advanced Optical Materials, 2015, 3, 583-592.}	7.3	32
173	Poly(1-adamantyl acrylate): Living Anionic Polymerization, Block Copolymerization, and Thermal Properties. Macromolecules, 2016, 49, 9406-9414.	4.8	32
174	An intense NIR emission from Ca ₁₄ Al ₁₀ Zn ₆ O ₃₅ :Mn ⁴⁺ ,Yb ³⁺ via energy transfer for solar spectral converters. Dalton Transactions, 2016, 45, 466-468.	3.3	32
175	Phase-Tunable Synthesis of Monodisperse YPO ₄ :Ln ³⁺ (Ln = Ce, Eu, Tb) Micro/Nanocrystals via Topotactic Transformation Route with Multicolor Luminescence Properties. Inorganic Chemistry, 2017, 56, 6114-6121.	4.0	32
176	SWCNTâ€MoS ₂ â€6WCNT Vertical Point Heterostructures. Advanced Materials, 2017, 29, 1604469.	21.0	32
177	Metal/Ion Interactions Induced p–i–n Junction in Methylammonium Lead Triiodide Perovskite Single Crystals. Journal of the American Chemical Society, 2017, 139, 17285-17288.	13.7	32
178	Observable Two-Step Nucleation Mechanism in Solid-State Formation of Tungsten Carbide. ACS Nano, 2019, 13, 681-688.	14.6	32
179	The oxidation behavior of Ti–46.5Al–5Nb at 900°C. Intermetallics, 2007, 15, 989-998.	3.9	31
180	19 <i>μ</i> m quantum cascade infrared photodetectors. Applied Physics Letters, 2013, 102, .	3.3	31

#	Article	IF	CITATIONS
181	A new crystal: layer-structured rhombohedral In3Se4. CrystEngComm, 2014, 16, 393-398.	2.6	31
182	Towards sensitive terahertz detection via thermoelectric manipulation using graphene transistors. NPG Asia Materials, 2018, 10, 318-327.	7.9	31
183	Self-Doped Rutile Titania with High Performance for Direct and Ultrafast Assay of H ₂ O ₂ . ACS Applied Materials & Samp; Interfaces, 2013, 5, 12784-12788.	8.0	30
184	Tunable multicolor and white luminescence in Tb3+/Dy3+/Mn2+ doped CePO4 via energy transfer. Journal of Alloys and Compounds, 2015, 637, 489-496.	5 . 5	30
185	Construction of pH-responsive and up-conversion luminescent NaYF4:Yb3+/Er3+@SiO2@PMAA nanocomposite for colon targeted drug delivery. Scientific Reports, 2016, 6, 21335.	3.3	30
186	Orientation Dependence of Electromechanical Characteristics of Defect-free InAs Nanowires. Nano Letters, 2016, 16, 1787-1793.	9.1	30
187	Shallow-terrace-like interface in dilute-bismuth GaSb/AlGaSb single quantum wells evidenced by photoluminescence. Journal of Applied Physics, 2013, 113, 153505.	2.5	29
188	Importance of Suppression of Yb ³⁺ De-Excitation to Upconversion Enhancement in \hat{l}^2 -NaYF ₄ : Yb ³⁺ /Er ³⁺ @ \hat{l}^2 -NaYF ₄ Sandwiched Structure Nanocrystals. Inorganic Chemistry, 2015, 54, 3921-3928.	4.0	29
189	Fabrication of a novel TiO ₂ /S composite cathode for high performance lithium–sulfur batteries. RSC Advances, 2015, 5, 77348-77353.	3.6	29
190	Effect of pH on the microstructure of \hat{l}^2 -Ga2O3 and its enhanced photocatalytic activity for antibiotic degradation. Journal of Colloid and Interface Science, 2018, 519, 255-262.	9.4	29
191	In Situ TEM Observation of Crystal Structure Transformation in InAs Nanowires on Atomic Scale. Nano Letters, 2018, 18, 6597-6603.	9.1	29
192	High extinction ratio super pixel for long wavelength infrared polarization imaging detection based on plasmonic microcavity quantum well infrared photodetectors. Scientific Reports, 2018, 8, 15070.	3.3	29
193	Atomic-Scale Mechanism on Nucleation and Growth of Mo ₂ C Nanoparticles Revealed by in Situ Transmission Electron Microscopy. Nano Letters, 2016, 16, 7875-7881.	9.1	28
194	Topotactic Transformation Route to Monodisperse β-NaYF ₄ :Ln ³⁺ Microcrystals with Luminescence Properties. Inorganic Chemistry, 2016, 55, 1912-1919.	4.0	28
195	Roomâ€Temperature Highâ€Gain Longâ€Wavelength Photodetector via Optical–Electrical Controlling of Hot Carriers in Graphene. Advanced Optical Materials, 2018, 6, 1800836.	7.3	28
196	Structural and electronic properties of Sbn(n=2–10) clusters using density-functional theory. Physical Review A, 2005, 72, .	2.5	27
197	Orientation relationship between TiB precipitate and Î ³ -TiAl phase. Scripta Materialia, 2007, 56, 441-444.	5. 2	27
198	Monodisperse YVO4:Eu3+ submicrocrystals: controlled synthesis and luminescence properties. CrystEngComm, 2013, 15, 5776.	2.6	27

#	Article	IF	CITATIONS
199	Enlargement of the nontransmission frequency range of multiple-channeled filters by the use of heterostructures. Journal of Applied Physics, 2004, 95, 424-426.	2.5	26
200	TEM investigation of the oxide scale of Ti–46.5Al–5Nb at 900°C for 50h. Intermetallics, 2007, 15, 824-831.	3.9	26
201	An orange-emitting phosphor via the efficient Ce3+–Mn2+ and Eu2+–Mn2+ energy transfers in La9.33(SiO4)6O2 for UV or near-UV LEDs. New Journal of Chemistry, 2013, 37, 3701.	2.8	26
202	Structural, electronic, and optical properties of hydrogenated few-layer silicene: Size and stacking effects. Journal of Applied Physics, 2013, 114, .	2.5	26
203	Performance Optimization of InSb Infrared Focal-Plane Arrays with Diffractive Microlenses. Journal of Electronic Materials, 2014, 43, 2795-2801.	2.2	26
204	Significant enhancement in photocatalytic activity of high quality SiC/graphene core–shell heterojunction with optimal structural parameters. RSC Advances, 2014, 4, 46771-46779.	3.6	26
205	Room temperature magnetic exchange coupling in multiferroic BaTiO3/CoFe2O4 magnetoelectric superlattice. Journal of Materials Science, 2009, 44, 5143-5148.	3.7	25
206	Direct observation of carbon nanostructure growth at liquid–solid interfaces. Chemical Communications, 2014, 50, 826-828.	4.1	25
207	Cracks bring robustness: a pre-cracked NiO nanosponge electrode with greatly enhanced cycle stability and rate performance. Journal of Materials Chemistry A, 2016, 4, 8211-8218.	10.3	25
208	Hybrid lanthanide nanoparticles as a new class of binary contrast agents for in vivo T ₁ /T ₂ dual-weighted MRI and synergistic tumor diagnosis. Journal of Materials Chemistry B, 2016, 4, 2715-2722.	5.8	25
209	Large-area and highly crystalline MoSe ₂ for optical modulator. Nanotechnology, 2017, 28, 484001.	2.6	25
210	Design and Synthesis of Multigraft Copolymer Thermoplastic Elastomers: Superelastomers. Macromolecular Chemistry and Physics, 2018, 219, 1700254.	2.2	25
211	Deformation-induced $\hat{i}\pm2\hat{a}\uparrow^{\prime}\hat{i}^{3}$ phase transformation in TiAl alloys. Materials Characterization, 2010, 61, 1029-1034.	4.4	24
212	Coherent fluorescence emission by using hybrid photonic–plasmonic crystals. Laser and Photonics Reviews, 2014, 8, 717-725.	8.7	24
213	A new low-temperature solution route to Aurivillius-type layered oxyfluoride perovskites Bi2MO5F (M) Tj ETQq $1\ 1$	0,784314 20.2	· rgβT /Over
214	Reflective metalens with sub-diffraction-limited and multifunctional focusing. Scientific Reports, 2017, 7, 12632.	3.3	24
215	Synthesis, luminescence and application of novel europium, cerium and terbium-doped apatite phosphors. CrystEngComm, 2019, 21, 6226-6237.	2.6	24
216	First-principles investigations on elastic properties of - and - Ta4AlC3. Solid State Communications, 2009, 149, 441-444.	1.9	23

#	Article	IF	Citations
217	Sub-10 nm BaLaF5:Mn/Yb/Er nanoprobes for dual-modal synergistic in vivo upconversion luminescence and X-ray bioimaging. Journal of Materials Chemistry B, 2014, 2, 6527-6533.	5.8	23
218	Quality Control of GaAs Nanowire Structures by Limiting As Flux in Molecular Beam Epitaxy. Journal of Physical Chemistry C, 2015, 119, 20721-20727.	3.1	23
219	High dielectric tunability, electrostriction strain and electrocaloric strength at a tricritical point of tetragonal, rhombohedral and pseudocubic phases. Journal of Alloys and Compounds, 2015, 646, 597-602.	5.5	23
220	Quantum dot single-photon switches of resonant tunneling current for discriminating-photon-number detection. Scientific Reports, 2015, 5, 9389.	3.3	23
221	Facile preparation of hierarchical TiO ₂ nanowireâ€"nanoparticle/nanotube architecture for highly efficient dye-sensitized solar cells. Journal of Materials Chemistry A, 2015, 3, 20366-20374.	10.3	23
222	The elastic properties of hexagonal osmium under pressure: The first-principles investigations. Physica B: Condensed Matter, 2009, 404, 1218-1221.	2.7	22
223	Realization of photoreflectance spectroscopy in very-long wave infrared of up to 20â€,Î⅓m. Applied Physics Letters, 2009, 95, 041908.	3.3	22
224	Ordered Hierarchical Porous Platinum Membranes with Tailored Mesostructures. Angewandte Chemie - International Edition, 2010, 49, 10101-10105.	13.8	22
225	Structure dependent quantum confinement effect in hydrogen-terminated nanodiamond clusters. Journal of Applied Physics, 2010, 108, 094303.	2.5	22
226	Au impact on GaAs epitaxial growth on GaAs (111)B substrates in molecular beam epitaxy. Applied Physics Letters, 2013 , 102 , .	3.3	22
227	Ba ₂ GdF ₇ Nanocrystals: Solution-Based Synthesis, Growth Mechanism, and Luminescence Properties. Crystal Growth and Design, 2014, 14, 1819-1826.	3.0	22
228	Color tuning and energy transfer in Eu ²⁺ /Mn ²⁺ -doped Ba ₃ Y(PO ₄) ₃ eulytite-type orthophosphate phosphors. RSC Advances, 2015, 5, 46517-46524.	3.6	22
229	Morphological control of SnTe nanostructures by tuning catalyst composition. Nano Research, 2015, 8, 3011-3019.	10.4	22
230	Controlled synthesis of 3D flower-like MgWO ₄ :Eu ³⁺ hierarchical structures and fluorescence enhancement through introduction of carbon dots. CrystEngComm, 2018, 20, 608-614.	2.6	22
231	Plasmon-engineered anti-replacement synthesis of naked Cu nanoclusters with ultrahigh electrocatalytic activity. Journal of Materials Chemistry A, 2018, 6, 18687-18693.	10.3	22
232	Effect of niobium on the oxidation behavior of TiAl. Journal of Materials Research, 2007, 22, 1486-1490.	2.6	21
233	Novel synthesis and luminescence properties of t-LaVO ₄ :Eu ³⁺ micro cube. CrystEngComm, 2014, 16, 152-158.	2.6	21
234	Prediction of half-semiconductor antiferromagnets with vanishing net magnetization. RSC Advances, 2015, 5, 46640-46647.	3.6	21

#	Article	IF	Citations
235	Surface-States-Modulated High-Performance InAs Nanowire Phototransistor. Journal of Physical Chemistry Letters, 2020, 11, 6413-6419.	4.6	21
236	Pristine PN junction toward atomic layer devices. Light: Science and Applications, 2022, 11, .	16.6	21
237	Evolution of valence-band alignment with nitrogen content in GaNAsâ̂•GaAs single quantum wells. Applied Physics Letters, 2008, 93, .	3.3	20
238	Theoretical prediction on the structural, electronic, and polarization properties of tetragonal Bi2ZnTiO6. Journal of Applied Physics, 2009, 105, .	2.5	20
239	Controlled synthesis, asymmetrical transport behavior and luminescence properties of lanthanide doped ZnO mushroom-like 3D hierarchical structures. Nanoscale, 2014, 6, 13795-13802.	5.6	20
240	One-pot synthesis of PEG modified BaLuF ₅ :Gd/Yb/Er nanoprobes for dual-modal in vivo upconversion luminescence and X-ray bioimaging. Dalton Transactions, 2014, 43, 13343-13348.	3.3	20
241	Stable 4 V-class bicontinuous cathodes by hierarchically porous carbon coating on Li ₃ V ₂ (PO ₄) ₃ nanospheres. Nanoscale, 2014, 6, 12426-12433.	5.6	20
242	Photoluminescence, energy transfer and tunable color of Ce3+, Tb3+ and Eu2+ activated oxynitride phosphors with high brightness. Dalton Transactions, 2016, 45, 9676-9683.	3.3	20
243	Crystal-phase control of GaAs–GaAsSb core–shell/axial nanowire heterostructures by a two-step growth method. Journal of Materials Chemistry C, 2018, 6, 6726-6732.	5.5	20
244	Atomic-Scale Insights into the Dynamics of Growth and Degradation of All-Inorganic Perovskite Nanocrystals. Journal of Physical Chemistry Letters, 2020, 11, 4618-4624.	4.6	20
245	Circular Polarization Discrimination Enhanced by Anisotropic Media. Advanced Optical Materials, 2020, 8, 1901800.	7.3	20
246	Carrier dynamics in submonolayer InGaAsâ [•] GaAs quantum dots. Applied Physics Letters, 2006, 89, 013113.	3.3	19
247	Color tuning and energy transfer investigation in Na2Ca4Mg2Si4O15:Eu2+, Mn2+ phosphor and its potential application for UV-excited UV-WLEDs. RSC Advances, 2014, 4, 7588.	3.6	19
248	Regioselective alkyl transfer from phosphonium ylides to functionalized polyfluoroarenes. Chemical Science, 2014, 5, 1934-1939.	7.4	19
249	Significant Enhancement of Single-Walled Carbon Nanotube Based Infrared Photodetector Using PbS Quantum Dots. IEEE Journal of Selected Topics in Quantum Electronics, 2018, 24, 1-8.	2.9	19
250	In situ TEM study of the sodiation/desodiation mechanism of MnO2 nanowire with gel-electrolytes. Energy Storage Materials, 2018, 15, 91-97.	18.0	19
251	Top-gated black phosphorus phototransistor for sensitive broadband detection. Nanoscale, 2018, 10, 5852-5858.	5.6	19
252	Selected and Enhanced Single Whispering-Gallery Mode Emission from a Mesostructured Nanomembrane Microcavity. Nano Letters, 2018, 18, 8035-8040.	9.1	19

#	Article	IF	Citations
253	Largeâ€Area Lowâ€Cost Dielectric Perfect Absorber by Oneâ€Step Sputtering. Advanced Optical Materials, 2019, 7, 1801596.	7.3	19
254	Realization of ultra-long columnar single crystals in TiO ₂ nanotube arrays as fast electron transport channels for high efficiency dye-sensitized solar cells. Journal of Materials Chemistry A, 2019, 7, 11520-11529.	10.3	19
255	Enhanced Performance of HgCdTe Midwavelength Infrared Electron Avalanche Photodetectors With Guard Ring Designs. IEEE Transactions on Electron Devices, 2020, 67, 542-546.	3.0	19
256	Ternary 2D Layered Material FePSe ₃ and Nearâ€Infrared Photodetector. Advanced Electronic Materials, 2021, 7, 2100207.	5.1	19
257	Ultralow Threshold, Single-Mode InGaAs/GaAs Multiquantum Disk Nanowire Lasers. ACS Nano, 2021, 15, 9126-9133.	14.6	19
258	Direct Observation of Oxygen Evolution and Surface Restructuring on Mn ₂ O ₃ Nanocatalysts Using <i>In</i> Ci>Situ and <i>Ex Situ</i> Transmission Electron Microscopy. Nano Letters, 2021, 21, 7012-7020.	9.1	19
259	Tuning the detection wavelength of quantum-well infrared photodetectors by single high-energy implantation. Applied Physics Letters, 2001, 78, 10-12.	3.3	18
260	Relaxations and bonding mechanism in Hg1â^'xCdxTewith mercury vacancy defect: First-principles study. Physical Review B, 2006, 73, .	3.2	18
261	Low threshold amplified spontaneous emission from tin oxide quantum dots: a instantiation of dipole transition silence semiconductors. Nanoscale, 2013, 5, 11561.	5.6	18
262	Indium segregation measured in InGaN quantum well layer. Scientific Reports, 2015, 4, 6734.	3.3	18
263	Syntheses, crystal structures and photoluminescence properties of Ca ₉ Y(PO ₄) ₅ (SiO ₄)F _{1.5} O _{0.25} :Ln<(Ln ³⁺ = Eu ³⁺ /Tb ³⁺ /Dy ³⁺ /Sm ³⁺) phosphors for near-UV white LEDs. RSC Advances, 2016, 6, 92371-92377.	(sup ₂ 3+ </td <td>sup}</td>	sup}
264	All-acrylic superelastomers: facile synthesis and exceptional mechanical behavior. Polymer Chemistry, 2018, 9, 160-168.	3.9	18
265	Influence of Plasmonic Effect on the Upconversion Emission Characteristics of NaYF ₄ Hexagonal Microrods. Inorganic Chemistry, 2018, 57, 8200-8204.	4.0	18
266	Enhanced Performance of HgCdTe Long-Wavelength Infrared Photodetectors With nBn Design. IEEE Transactions on Electron Devices, 2020, 67, 2001-2007.	3.0	18
267	High-performance HgCdTe avalanche photodetector enabled with suppression of band-to-band tunneling effect in mid-wavelength infrared. Npj Quantum Materials, 2021, 6, .	5.2	18
268	Electronic, magnetic and dielectric properties of multiferroic MnTiO3. Journal of Materials Research, 2012, 27, 1421-1429.	2.6	17
269	Dendritic Y4O(OH)9NO3:Eu3+/Y2O3:Eu3+ hierarchical structures: controlled synthesis, growth mechanism, and luminescence properties. CrystEngComm, 2013, 15, 4844.	2.6	17
270	The resonant tunability, enhancement, and damping of plasma waves in the two-dimensional electron gas plasmonic crystals at terahertz frequencies. Applied Physics Letters, 2013, 102, .	3.3	17

#	Article	IF	CITATIONS
271	Sub-Wavelength Grating Enhanced Ultra-Narrow Graphene Perfect Absorber. Plasmonics, 2018, 13, 2267-2272.	3.4	17
272	Synthesis of naked plasmonic/magnetic Au/Fe ₃ O ₄ nanostructures by plasmon-driven anti-replacement reaction. Nanotechnology, 2019, 30, 065605.	2.6	17
273	Chain flexibility and glass transition temperatures of poly(n-alkyl (meth)acrylate)s: Implications of tacticity and chain dynamics. Polymer, 2021, 213, 123207.	3.8	17
274	Colossal Terahertz Photoresponse at Room Temperature: A Signature of Type-II Dirac Fermiology. ACS Nano, 2021, 15, 5138-5146.	14.6	17
275	Chirality-Assisted Aharonov–Anandan Geometric-Phase Metasurfaces for Spin-Decoupled Phase Modulation. ACS Photonics, 2021, 8, 1847-1855.	6.6	17
276	Dynamical evolution of anisotropic response of type-II Weyl semimetal TalrTe4 under ultrafast photoexcitation. Light: Science and Applications, 2021, 10, 101.	16.6	17
277	Luminescent single-crystal ZnO nanorods: Controlled synthesis through altering the solvents composition. Materials Letters, 2012, 81, 229-231.	2.6	16
278	Realization of multiphoton lasing from carbon nanodot microcavities. Nanoscale, 2017, 9, 5957-5963.	5.6	16
279	Multifunctional NiTiO ₃ nanocoating fabrication based on the dual-Kirkendall effect enabling a stable cathode/electrolyte interface for nickel-rich layered oxides. Journal of Materials Chemistry A, 2018, 6, 2643-2652.	10.3	16
280	Multi-Band Up-Converted Lasing Behavior in NaYF4:Yb/Er Nanocrystals. Nanomaterials, 2018, 8, 497.	4.1	16
281	Direct observation and manipulation of hot electrons at room temperature. National Science Review, 2021, 8, nwaa295. Electronic properties and chemical trends of the arsenic <i>in situ</i>	9.5	16
282	xmlns:mml="http://www.w3.org/1998/Math/MathML" display="inline"> <mml:mrow><mml:msub><mml:mi mathvariant="normal">Hg</mml:mi><mml:mrow><mml:mn>1</mml:mn><mml:mo>â^'</mml:mo><mml:mi>xCd</mml:mi><mml:mi>x</mml:mi><fmml:mi> first-principles study. Physical Review</fmml:mi></mml:mrow></mml:msub></mml:mrow>	nŋl;mi> </td <td>mml:mrow></td>	mml:mrow>
283	B, 2007, 76, . Deformation-induced \hat{I}	3.9	15
284	Color tunable emission and energy transfer in Eu2+, Tb3+, or Mn2+-activated cordierite for near-UV white LEDs. New Journal of Chemistry, 2014, 38, 2884.	2.8	15
285	Nanoscale imaging of the photoresponse in PN junctions of InGaAs infrared detector. Scientific Reports, 2016, 6, 21544.	3.3	15
286	In situ synthesis of rice-like ZnGa2O4 for the photocatalytic removal of organic and inorganic pollutants. Materials Science in Semiconductor Processing, 2016, 56, 251-259.	4.0	15
287	Slowing Hot-Electron Relaxation in Mix-Phase Nanowires for Hot-Carrier Photovoltaics. Nano Letters, 2021, 21, 7761-7768.	9.1	15
288	High-resolution image simulation of overlap structures in TiAl alloy. Journal of Alloys and Compounds, 2009, 468, 179-186.	5 . 5	14

#	Article	IF	Citations
289	Quantitative determination of Eliashberg function and evidence of strong electron coupling with multiple phonon modes in heavily overdoped (Bi,Pb)2Sr2CuO6+ $\hat{\Gamma}$. Physical Review B, 2011, 83, .	3.2	14
290	Crystal structure, morphology and luminescent properties of rare earthion-doped SrHPO4 nanomaterials. Journal of Rare Earths, 2015, 33, 355-360.	4.8	14
291	Defect-free thin InAs nanowires grown using molecular beam epitaxy. Nanoscale, 2016, 8, 1401-1406.	5.6	14
292	Light-Induced Positive and Negative Photoconductances of InAs Nanowires toward Rewritable Nonvolatile Memory. ACS Applied Electronic Materials, 2019, 1, 1825-1831.	4.3	14
293	Phase transformation in the nitride layer during the oxidation of TiAl-based alloys. Scripta Materialia, 2007, 56, 773-776.	5.2	13
294	Electronic structure and chemical bonding of \hat{l}_{\pm} - and \hat{l}^2 -Ta ₄ AlC ₃ phases: Full-potential calculation. Journal of Materials Research, 2008, 23, 2350-2356.	2.6	13
295	Coupling of localized surface plasmon modes in compound structure with metallic nanoparticle and nanohole arrays. Journal of Applied Physics, 2010, 108, 093520.	2.5	13
296	Tailoring electronic properties of InAs nanowires by surface functionalization. Journal of Applied Physics, 2011, 110, 103713.	2.5	13
297	Analysis of Interface Scattering in AlGaN/GaN/InGaN/GaN Double-Heterojunction High-Electron-Mobility Transistors. Journal of Electronic Materials, 2012, 41, 2130-2138.	2.2	13
298	Nanoscale free-standing magnetoelectric heteropillars. Nanoscale, 2013, 5, 6747.	5.6	13
299	Monodispersed LaF ₃ nanocrystals: shape-controllable synthesis, excitation-power-dependent multi-color tuning and intense near-infrared upconversion emission. Nanotechnology, 2014, 25, 065703.	2.6	13
300	Controllable multicolor output, white luminescence and cathodoluminescence properties of high quality NaCeF4:Ln3+ (Ln3+ = Eu3+, Dy3+, Tb3+) nanorods. RSC Advances, 2014, 4, 49916-49923.	3.6	13
301	Two-step ion-exchange synthetic strategy for obtaining monodisperse NaYF ₄ :Ln ³⁺ nanostructures with multicolor luminescence properties. Journal of Materials Chemistry C, 2015, 3, 1091-1098.	5.5	13
302	Enhanced photocatalytic performance and morphology evolvement of PbWO ₄ dendritic nanostructures through Eu ³⁺ doping. RSC Advances, 2016, 6, 81447-81453.	3.6	13
303	Tunable phase and upconverting luminescence of Gd3+ co-doped NaErF4:Yb3+ nanostructures. Materials Research Bulletin, 2017, 95, 509-514.	5.2	13
304	Optical Waveguide of Buckled CdS Nanowires Modulated by Strain-Engineering. ACS Photonics, 2018, 5, 746-751.	6.6	13
305	Distinctive Performance of Terahertz Photodetection Driven by Chargeâ€Densityâ€Wave Order in CVDâ€Grown Tantalum Diselenide. Advanced Functional Materials, 2019, 29, 1905057.	14.9	13
306	High-responsivity and polarization-discriminating terahertz photodetector based on plasmonic resonance. Applied Physics Letters, 2019, 114, .	3.3	13

#	Article	IF	Citations
307	Recent Progress in Improving the Performance of Infrared Photodetectors via Optical Field Manipulations. Sensors, 2022, 22, 677.	3.8	13
308	Coupled Tamm plasmon polaritons induced narrow bandpass filter with ultra-wide stopband. Nano Research, 2022, 15, 4563-4568.	10.4	13
309	Self-frequency-conversion nanowire lasers. Light: Science and Applications, 2022, 11, 120.	16.6	13
310	Spectrum Analysis of 2-D Plasmon in GaN-Based High Electron Mobility Transistors. IEEE Journal of Selected Topics in Quantum Electronics, 2013, 19, 8400507-8400507.	2.9	12
311	Facile large-scale synthesis of monodisperse REF ₃ (RE = Y, Ce, Nd, Sm-Lu) nano/microcrystals and luminescence properties. Journal of Materials Chemistry C, 2014, 2, 7666.	5.5	12
312	Whiteâ€Emitting Tuning and Energy Transfer in Eu ²⁺ /Mn ²⁺ â€Substituted Apatiteâ€Type Fluorophosphate Phosphors. Journal of the American Ceramic Society, 2015, 98, 1162-1168.	3.8	12
313	Thin tungsten telluride layer preparation by thermal annealing. Nanotechnology, 2016, 27, 414006.	2.6	12
314	Single-crystal Bi2Ga4O9 nanoplates with exposed {110} facets for photocatalytic degradation of Acid Red 1. Molecular Catalysis, 2017, 433, 354-362.	2.0	12
315	Ultrasensitive and Selfâ€Powered Terahertz Detection Driven by Nodalâ€Line Dirac Fermions and Van der Waals Architecture. Advanced Science, 2021, 8, e2102088.	11.2	12
316	Selective excitation of surface-polariton Bloch waves for efficient transmission of light through a subwavelength hole array in a thin metal film. Physical Review B, 2007, 76, .	3.2	11
317	Cucurbit[<i>7</i>]urilâ€Based Vesicles Formed by Selfâ€assembly of Supramolecular Amphiphiles. Chinese Journal of Chemistry, 2012, 30, 2085-2090.	4.9	11
318	Aligned TiO ₂ nanotube/nanoparticle heterostructures with enhanced electrochemical performance as three-dimensional anode for lithium-ion microbatteries. Nanotechnology, 2014, 25, 455401.	2.6	11
319	Shape-controlled synthesis and facet-dependent performance of single-crystal Bi ₂₅ GaO ₃₉ photocatalysts. CrystEngComm, 2016, 18, 7715-7721.	2.6	11
320	Phase purification of GaAs nanowires by prolonging the growth duration in MBE. Journal of Materials Chemistry C, 2017, 5, 5257-5262.	5.5	11
321	Integration of nanoscale light emitters: an efficient ultraviolet and blue random lasing from NaYF ₄ :Yb/Tm hexagonal nanocrystals. Photonics Research, 2018, 6, 943.	7.0	11
322	Hierarchically Ordered Nanochannel Array Membrane Reactor with Three-Dimensional Electrocatalytic Interfaces for Electrohydrogenation of CO ₂ to Alcohol. ACS Energy Letters, 2018, 3, 2649-2655.	17.4	11
323	Selectedâ€Area Chemical Nanoengineering of Vanadium Dioxide Nanostructures Through Nonlithographic Direct Writing. Advanced Materials Interfaces, 2018, 5, 1800974.	3.7	11
324	Quasiadiabatic electron transport in room temperature nanoelectronic devices induced by hot-phonon bottleneck. Nature Communications, 2021, 12, 4752.	12.8	11

#	Article	IF	CITATIONS
325	Microstructure of Oxide Scales Formed on Ti-48Al-8Cr-2Ag Alloy in Air at 900–1000�C. Oxidation of Metals, 2005, 63, 229-239.	2.1	10
326	Modulation mechanism of infrared photoreflectance in narrow-gap HgCdTe epilayers: A pump power dependent study. Journal of Applied Physics, 2010, 108, 023518.	2.5	10
327	The mechanism of the photoresponse blueshifts for the n-type conversion region of n+-on-p Hg0.722Cd0.278Te infrared photodiode. Journal of Applied Physics, 2010, 107, 044513.	2.5	10
328	Optimization of Optoelectronic Plasmonic Structures. Plasmonics, 2011, 6, 319-325.	3.4	10
329	Synthesis, Structure, and Photoluminescence Properties of Novel KBaSc ₂ (PO ₄) ₃ :Ce ³⁺ /Eu ²⁺ /Tb ³⁺ Phosphors for Whiteâ€Lightâ€Emitting Diodes. ChemPhysChem, 2015, 16, 2663-2669.	2.1	10
330	Nanofabrication of highly ordered, tunable metallic mesostructures via quasi-hard-templating of lyotropic liquid crystals. Scientific Reports, 2015, 4, 7420.	3.3	10
331	Angular dependence of optical modes in metal-insulator-metal coupled quantum well infrared photodetector. AIP Advances, 2016, 6, .	1.3	10
332	Band gap modulation in $\langle i \rangle \hat{I}^3 \langle i \rangle$ -graphyne by p-n codoping. Europhysics Letters, 2016, 115, 27009.	2.0	10
333	High-quality epitaxial wurtzite structured InAs nanosheets grown in MBE. Nanoscale, 2020, 12, 271-276.	5.6	10
334	Uniformly Broadband Far-Infrared Response From the Photocarrier Tunneling of Mesa Si:P Blocked-Impurity-Band Detector. IEEE Transactions on Electron Devices, 2021, 68, 560-564.	3.0	10
335	Realization of Integrated Narrow Bandpass Filters in the Infrared Region. Journal of Infrared, Millimeter and Terahertz Waves, 2004, 25, 1677-1683.	0.6	9
336	First-principles prediction of the hardness of fluorite TiO2. Physica B: Condensed Matter, 2009, 404, 79-81.	2.7	9
337	Identification of metal-cage coupling in a single metallofullerene by inelastic electron tunneling spectroscopy. Applied Physics Letters, 2010, 96, 253110.	3.3	9
338	Nanowires: Anomalous and Highly Efficient InAs Nanowire Phototransistors Based on Majority Carrier Transport at Room Temperature (Adv. Mater. 48/2014). Advanced Materials, 2014, 26, 8232-8232.	21.0	9
339	Upconversion: Simultaneous Realization of Phase/Size Manipulation, Upconversion Luminescence Enhancement, and Blood Vessel Imaging in Multifunctional Nanoprobes Through Transition Metal Mn ²⁺ Doping (Adv. Funct. Mater. 26/2014). Advanced Functional Materials, 2014, 24, 4196-4196.	14.9	9
340	Multicolor tuning towards single red-emission band of upconversion nanoparticles for tunable optical component and optical/x-ray imaging agents via Ce ³⁺ doping. Nanotechnology, 2015, 26, 385702.	2.6	9
341	Deep Ultraviolet Emission from Water-Soluble SnO2 Quantum Dots Grown via a Facile "Top-Down― Strategy. Journal of Materials Science and Technology, 2015, 31, 670-673.	10.7	9
342	A novel transmission model for plasmon-induced transparency in plasmonic waveguide system with a single resonator. RSC Advances, 2016, 6, 51480-51484.	3.6	9

#	Article	IF	Citations
343	Synthesis of dendritic-like BiVO 4:Ag heterostructure for enhanced and fast photocatalytic degradation of RhB solution. Materials Research Bulletin, 2016, 84, 414-421.	5.2	9
344	<i>In situ</i> TEM observation of the vapor–solid–solid growth of <001̄> lnAs nanowires. Nanoscale, 2020, 12, 11711-11717.	5.6	9
345	<i>In Situ</i> Observation of Nucleation and Crystallization of a Single Nanoparticle in Transparent Media. Journal of Physical Chemistry C, 2020, 124, 15533-15540.	3.1	9
346	Photothermal Diatomite/Carbon Nanotube Combined Aerogel for Highâ€Efficiency Solar Steam Generation and Wastewater Purification. Solar Rrl, 2022, 6, .	5.8	9
347	Evolution of infrared photoreflectance lineshape with temperature in narrow-gap HgCdTe epilayers. Applied Physics Letters, 2008, 93, 131914.	3.3	8
348	First-principles study of deformation-induced phase transformations in Ti–Al intermetallics. Journal of Materials Research, 2009, 24, 1662-1666.	2.6	8
349	Development of an infrared detector: Quantum well infrared photodetector. Science in China Series G: Physics, Mechanics and Astronomy, 2009, 52, 969-977.	0.2	8
350	Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model. Optical and Quantum Electronics, 2013, 45, 597-604.	3.3	8
351	Photodetectors: Ultrasensitive and Broadband MoS ₂ Photodetector Driven by Ferroelectrics (Adv. Mater. 42/2015). Advanced Materials, 2015, 27, 6538-6538.	21.0	8
352	Sub-10nm lanthanide doped BaLuF5 nanocrystals: Shape controllable synthesis, tunable multicolor emission and enhanced near-infrared upconversion luminescence. Materials Research Bulletin, 2015, 64, 27-32.	5.2	8
353	A visible high efficiency and polarization-insensitive 34-level dielectric metasurface hologram. RSC Advances, 2017, 7, 26371-26376.	3.6	8
354	Dark Mode Driven Extra-narrow and Multiband Absorber. Plasmonics, 2018, 13, 729-735.	3.4	8
355	Study of Crystallization and Coalescence of Nanocrystals in Amorphous Glass at High Temperature. Inorganic Chemistry, 2019, 58, 9500-9504.	4.0	8
356	Study on Infrared Transmission Spectrum of Sildenafil Citrate Mixed in Traditional Chinese Medicine. Journal of Infrared, Millimeter and Terahertz Waves, 2003, 24, 1177-1185.	0.6	7
357	Complete band gaps in three-dimensional quantum dot photonic crystals. Physical Review B, 2006, 74, .	3.2	7
358	Microscopic Origin of Electrical Compensation in Arsenic-Doped HgCdTe by Molecular Beam Epitaxy: Density Functional Study. Journal of Electronic Materials, 2007, 36, 890-894.	2.2	7
359	The theory and experiment of very-long-wavelength $256\tilde{A}-1$ GaAs/Al x Ga1â^3x As quantum well infrared detector linear arrays. Science in China Series G: Physics, Mechanics and Astronomy, 2008, 51, 805-812.	0.2	7
360	Thermodynamic phase diagram for hydrogen on polar InP(111)B surfaces. Journal of Applied Physics, 2010, 107, 063516.	2.5	7

#	Article	IF	Citations
361	Incorporating Tb3+ and Mn2+ into a high efficiency BaCa2MgSi2O8:Eu2+ phosphor and its luminescent properties. RSC Advances, 2013, 3, 20619.	3.6	7
362	An Effective Approach for the Identification of Carrier Type and Local Inversion Doping in Graphene by Biased Atomic Force Microscopy. Advanced Electronic Materials, 2016, 2, 1500255.	5.1	7
363	Evidencing the structural conversion of hydrothermally synthesized titanate nanorods by in situ electron microscopy. Journal of Materials Chemistry A, 2017, 5, 3786-3791.	10.3	7
364	A Hierarchically Porous Hollow Structure of Layered Bi ₂ TiO ₄ F ₂ for Efficient Photocatalysis. European Journal of Inorganic Chemistry, 2017, 2017, 1892-1899.	2.0	7
365	Solution properties, unperturbed dimensions, and chain flexibility of poly(1â€adamantyl acrylate). Journal of Polymer Science, Part B: Polymer Physics, 2017, 55, 1526-1531.	2.1	7
366	Thermoplastic Elastomers Based on Block, Graft, and Star Copolymers. , 0, , .		7
367	Deformation-induced \hat{I}^3 \hat{a}^{\dagger} DI- \hat{I}^{\pm} ₂ phase transformation occurring in the twin-intersection region of TiAl alloys. Journal of Materials Research, 2007, 22, 2416-2422.	2.6	6
368	Simulation for light power distribution of 3D InGaN/GaN MQW LED with textured surface. Optical and Quantum Electronics, 2011, 42, 739-745.	3.3	6
369	A Facile Synthesis and Optical Properties of Bundle-Shaped TbPO _{4} ·H _{2} O Nanorods. Advances in Condensed Matter Physics, 2013, 2013, 1-5.	1.1	6
370	The enhanced infrared absorption of quantum well infrared photodetector based on a hybrid structure of periodic gold stripes overlaid with a gold film. Optics Communications, 2014, 328, 91-95.	2.1	6
371	Emission energy, exciton dynamics and lasing properties of buckled CdS nanoribbons. Scientific Reports, 2016, 6, 26607.	3.3	6
372	Wide tunability and electron transfer in GaAs/AlGaAs quantum well photodetector by magnetic field. Applied Physics Letters, 2017, 110, 192102.	3.3	6
373	Free-Standing InAs Nanobelts Driven by Polarity in MBE. ACS Applied Materials & Samp; Interfaces, 2019, 11, 44609-44616.	8.0	6
374	Au-catalysed free-standing wurtzite structured InAs nanosheets grown by molecular beam epitaxy. Nano Research, 2019, 12, 2718-2722.	10.4	6
375	Cut-off wavelength manipulation of pixel-level plasmonic microcavity for long wavelength infrared detection. Applied Physics Letters, 2019, 114, .	3.3	6
376	Rapid and Precise Wavelength Determination Approach Based on Visually Patterned Integrated Narrow Bandpass Filters. IEEE Photonics Journal, 2019, 11, 1-7.	2.0	6
377	Strain-engineered room temperature cavity polariton in ZnO whispering gallery microcavity. Applied Physics Letters, 2020, 116, .	3.3	6
378	Enhanced Performance of a Soft Strain Sensor by Combining Microcracks with Wrinkled Structures. Physica Status Solidi - Rapid Research Letters, 2020, 14, 2000400.	2.4	6

#	Article	IF	Citations
379	A strategy to enhance the up-conversion luminescence of nanospherical, rod-like and tube-like NaYF ₄ : Yb ³⁺ , Er ³⁺ (Tm ³⁺) by combining with carbon dots. CrystEngComm, 2021, 23, 935-943.	2.6	6
380	First principle study on the bonding mechanism of nanoring structure Ga8As8. European Physical Journal D, 2005, 34, 47-50.	1.3	5
381	Study on the p-type QWIP-LED device. Science in China Series G: Physics, Mechanics and Astronomy, 2006, 49, 401-410.	0.2	5
382	Catalytic effect and nucleation stability of Au on GaAs(111)B surface. Journal of Applied Physics, 2010, 108, 013526.	2.5	5
383	Fabrication and characterization of graphene derived from SiC. Science China: Physics, Mechanics and Astronomy, 2013, 56, 2386-2394.	5.1	5
384	Facile hydrothermal synthesis and luminescent properties of Eu-doped CaF ₂ â€"YF ₃ alkaline-earth ternary fluoride microspheres. RSC Advances, 2014, 4, 35750.	3.6	5
385	Tumor Detection: Remarkable NIR Enhancement of Multifunctional Nanoprobes for In Vivo Trimodal Bioimaging and Upconversion Optical/T2-Weighted MRI-Guided Small Tumor Diagnosis (Adv. Funct.) Tj ETQq1 1	0. 78.4 314	rgBT /Overlo
386	Structure and photoluminescence studies on europium- and manganese-substituted eulytite-type orthophosphate phosphors. New Journal of Chemistry, 2015, 39, 9951-9957.	2.8	5
387	Controllable synergistic effect of Yb3+, Er3+co-doped KLu2F7with the assistant of defect state. CrystEngComm, 2016, 18, 2642-2649.	2.6	5
388	Photodetectors: Ultrasensitive Roomâ€Temperature Terahertz Direct Detection Based on a Bismuth Selenide Topological Insulator (Adv. Funct. Mater. 31/2018). Advanced Functional Materials, 2018, 28, 1870219.	14.9	5
389	Controllable synthesis of multi-morphological SrWO ₄ :Ln ³⁺ (Ln = Eu, Tb) hierarchical structures and their luminescence properties. CrystEngComm, 2019, 21, 6482-6490.	2.6	5
390	Mechanism of dark current dependence on reverse voltage in mid-wavelength infrared HgCdTe mesa PIN avalanche diode. Optical and Quantum Electronics, 2021, 53, 1.	3.3	5
391	Deep UV random lasing from NaGdF ₄ :Yb ³⁺ ,Tm ³⁺ upconversion nanocrystals in amorphous borosilicate glass. Optics Letters, 2020, 45, 3095.	3.3	5
392	Photonic slide rule with metasurfaces. Light: Science and Applications, 2022, 11, 77.	16.6	5
393	A candidate material EuSn2As2-based terahertz direct detection and imaging. Npj 2D Materials and Applications, 2022, 6, .	7.9	5
394	Progress and challenges in blocked impurity band infrared detectors for space-based astronomy. Science China: Physics, Mechanics and Astronomy, 2022, 65, .	5.1	5
395	Aligned silicon carbide nanocrystals at the SiO[sub 2]/Si interface by C implantation into SiO[sub 2] matrices. Journal of Vacuum Science and Technology A: Vacuum, Surfaces and Films, 2000, 18, 2591.	2.1	4
396	Photonic Band Cap in Two-Dimensional Anisotropic Photonic Crystal with Rectangular Bars. Journal of Infrared, Millimeter and Terahertz Waves, 2003, 24, 963-971.	0.6	4

#	Article	IF	Citations
397	TEM Study of the Initial Oxidation of Ti42Al48Cr8Ag2. Oxidation of Metals, 2007, 68, 65-76.	2.1	4
398	TEM observations of twin intersections in a Ti–47Al–2Cr–2Nb–0.1Y alloy compressed at room temperature. Journal of Alloys and Compounds, 2008, 454, 201-205.	5. 5	4
399	Orientation relationships between TiB (B27), B2, and Ti ₃ Al phases. Journal of Materials Research, 2009, 24, 1688-1692.	2.6	4
400	Studies on structures, electronic and magnetic properties of TM-doped InnSbn (n=7–12,14,16) clusters (TM=Mn, Fe, and Co). Journal of Applied Physics, 2011, 109, 014322.	2.5	4
401	Simulation of superconducting single photon detector coupled with metal–insulator–metal concentric ring grating. Optical and Quantum Electronics, 2014, 46, 1253-1259.	3.3	4
402	Raman mapping of laser-induced changes and ablation of InAs nanowires. Applied Physics A: Materials Science and Processing, 2014, 115, 885-893.	2.3	4
403	The enhanced optical coupling in a quantum well infrared photodetector based on a resonant mode of an air–dielectric–metal waveguide. Optical and Quantum Electronics, 2015, 47, 2347-2357.	3.3	4
404	Chemical potential effects on polytypism in Au-catalyzed GaAs nanowire molecular beam epitaxy growth: A first-principles study. Chemical Physics Letters, 2016, 644, 147-151.	2.6	4
405	Crystal structures, tunable emission and energy transfer of a novel GdAl ₁₂ O ₁₈ N:Eu ²⁺ ,Tb ³⁺ oxynitride phosphor. New Journal of Chemistry, 2016, 40, 2637-2643.	2.8	4
406	Tailoring Active Far-Infrared Resonator with Graphene Metasurface and Its Complementary. Plasmonics, 2017, 12, 353-360.	3.4	4
407	Ferroelastic domain structure and phase transition in single-crystalline [PbZn1/3Nb2/3O3]1-x[PbTiO3]x observed via in situ x-ray microbeam. Journal of the European Ceramic Society, 2018, 38, 1488-1497.	5.7	4
408	Detection of Cell Viability via Fluorescence Labeling of Silicate Phosphor with a Low-Temperature Superlong Persistent Luminescence. ACS Applied Bio Materials, 2019, 2, 2610-2616.	4.6	4
409	Synthesis and Characterization of Regioselectively Functionalized Mono-Sulfated and -Phosphorylated Anionic Poly-Amido-Saccharides. Biomacromolecules, 2022, 23, 2075-2088.	5.4	4
410	First-principles investigations of the magnetic properties of graphite boron nitride sheet induced by Fe doping. Journal of Physics Condensed Matter, 2010, 22, 205501.	1.8	3
411	Tysonite type Gd1â^'yCayF3â^'y solid solution: hydrothermal synthesis and luminescence properties. CrystEngComm, 2013, 15, 9930.	2.6	3
412	Au Nanoarrays: Surface Plasmon-Enhanced Photodetection in Few Layer MoS2Phototransistors with Au Nanostructure Arrays (Small 20/2015). Small, 2015, 11, 2346-2346.	10.0	3
413	Evolution of morphology and microstructure of GaAs/GaSb nanowire heterostructures. Nanoscale Research Letters, 2015, 10, 108.	5.7	3
414	Heterogeneous catalytic oxidation of pyridines to N-oxides under mild conditions using tungsten-loaded TiO2. Reaction Kinetics, Mechanisms and Catalysis, 2016, 119, 235-243.	1.7	3

#	Article	IF	CITATIONS
415	Measuring the carrier dynamics of photocatalyst micrograins using the Christiansen effect. Journal of Chemical Physics, 2017, 146, 234202.	3.0	3
416	Growth Processes of LuF3 Upconversion Nanoflakes with the Assistance of Amorphous Nanoclusters. ACS Applied Nano Materials, 2019, 2, 5254-5259.	5.0	3
417	Realizing single-mode lasing of cadmium selenide nanoribbons with strain engineering. Applied Physics Letters, 2020, 116, .	3.3	3
418	InGaAsP/InP single photon avalanche diodes with ultra-high photon detection efficiency. Optical and Quantum Electronics, 2020, 52, 1.	3.3	3
419	Linear array of charge sensitive infrared phototransistors for long wavelength infrared detection. Applied Physics Letters, 2020, 116, 233501.	3.3	3
420	Anisotropic Hot-Electron Kinetics Revealed by Terahertz Fluctuation. ACS Photonics, 2021, 8, 2674-2682.	6.6	3
421	Dynamics of the damping oscillator formed by the collective generation of surface polaritons for extraordinary light transmission through subwavelength hole arrays in thin metal films. Physical Review B, 2007, 76, .	3.2	2
422	THERMAL RADIATION PROPERTY OF A THREE DIMENSIONAL PHOTONIC CRYSTAL BASED ON MULTIPLE SCATTERING METHOD. Journal of Infrared, Millimeter and Terahertz Waves, 2007, 27, 425-434.	0.6	2
423	Design of violet InGaN light-emitting diode with staggered quantum well structure. Optoelectronics Letters, 2008, 4, 399-402.	0.8	2
424	Optical property of amorphous semiconductor mercury cadmium telluride from first-principles study. Science in China Series D: Earth Sciences, 2009, 52, 1928-1932.	0.9	2
425	The guidance for bowtie antennas design in near-field enhancement applications. , 2012, , .		2
426	Simulation of InGaN/GaN light-emitting diodes with a non-local quantum well transport model. , 2012, , .		2
427	Impact ionization in quantum well infrared photodetectors with different number of periods. Journal of Applied Physics, 2012, 111, 034504.	2.5	2
428	Simulation of superconducting single photon detector coupled with metal-insulator-metal circular grating. , 2013, , .		2
429	Photodetectors: High-Responsivity Graphene/InAs Nanowire Heterojunction Near-Infrared Photodetectors with Distinct Photocurrent On/Off Ratios (Small 8/2015). Small, 2015, 11, 890-890.	10.0	2
430	The mechanism and process of spontaneous boron doping in graphene in the theoretical perspective. Physics Letters, Section A: General, Atomic and Solid State Physics, 2016, 380, 3384-3388.	2.1	2
431	Effect of defect state on photon synergistic process in KLu2F7:Yb3+, Er3+ nanoparticles. Journal of Solid State Chemistry, 2016, 242, 222-227.	2.9	2
432	Formation of Self-Connected Si0.8Ge0.2 Lateral Nanowires and Pyramids on Rib-Patterned Si(1 1 10) Substrate. Nanoscale Research Letters, 2017, 12, 70.	5.7	2

#	Article	IF	CITATIONS
433	Surface Plasmon Resonance Enhanced Spontaneous Upconversion and Stimulated Emissions in Glass Ceramics Containing Ba2LaF7 Nanocrystals. Advances in Condensed Matter Physics, 2017, 2017, 1-6.	1.1	2
434	Strong terahertz response in quantum well photodetector based on intradonor transition by magnetic field. AIP Advances, $2018,8,.$	1.3	2
435	Ultrathin Dielectric Perfect Absorber: Largeâ€Area Lowâ€Cost Dielectric Perfect Absorber by Oneâ€Step Sputtering (Advanced Optical Materials 9/2019). Advanced Optical Materials, 2019, 7, 1970035.	7.3	2
436	Anchored metallocene linear lowâ€density polyethene cellulose nanocrystal composites. Polymer International, 2021, 70, 564-572.	3.1	2
437	Effect of microstructure on chain flexibility and glass transition temperature of polybenzofulvene. Polymer, 2021, 212, 123276.	3.8	2
438	Controlling fluctuations in small structures: Hidden information in the noise. Physical Review B, 2021, 104, .	3.2	2
439	Dispersion Curve of PbTiO3 in Tetragonal and Cubic Phases. Journal of Infrared, Millimeter and Terahertz Waves, 2001, 22, 469-476.	0.6	1
440	Interaction Between AsHg and V Hg in Arsenic-Doped Hg1â^'x Cd x Te. Journal of Electronic Materials, 2013, 42, 3054-3058.	2.2	1
441	Terahertz plasmon resonances in GaN and graphene. , 2013, , .		1
442	Passive detection of polarization and relative phases for L-band microwaves., 2013,,.		1
443	Post-Annealing Treatments and Interface Effects on Anomalous Magnetic Characteristics of HfOx Film. Integrated Ferroelectrics, 2013, 141, 145-153.	0.7	1
444	First principles study of half Heusler alloys PdFeBi and PdCoBi. , 2014, , .		1
445	Microwave-Induced DC Response of Spin Wave Resonance Driven by an Anisotropic Built-In Field in a Permalloy Thin Strip. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	1
446	Structural and Energetic Analysis of GroupÂV Impurities in p-Type HgCdTe: The Case of As and Sb. Journal of Electronic Materials, 2014, 43, 2849-2853.	2.2	1
447	Low-Dimensional Semiconductor Structures for Optoelectronic Applications. Advances in Condensed Matter Physics, 2015, 2015, 1-2.	1.1	1
448	Theoretical Analysis of Strainâ€Optoelectronic Properties in Externally Deformed Ge/GeSi Quantum Well Nanomembranes via Neutral Plane Modulation. Physica Status Solidi (B): Basic Research, 2020, 257, 1900732.	1.5	1
449	Terahertz Photon Detection: Sensitive Terahertz Detection and Imaging Driven by the Photothermoelectric Effect in Ultrashortâ€Channel Black Phosphorus Devices (Adv. Sci. 5/2020). Advanced Science, 2020, 7, 2070029.	11.2	1
450	Dual-color charge-sensitive infrared phototransistors with dynamic optical gate. Applied Physics Letters, 2021, 119, 103505.	3.3	1

#	Article	IF	Citations
451	Controllable Morphology, Phase and Luminescent Properties of Rare Earth Ion-doped LaPO4Nano-structural Materials. Acta Chimica Sinica, 2012, 70, 1812.	1.4	1
452	Nanosized alloy-based anode materials for Li ion batteries. , 2000, , .		1
453	Collapse Breakdown in Mid-Wavelength Infrared HgCdTe Avalanche Photodetector. IEEE Journal of Selected Topics in Quantum Electronics, 2022, 28, 1-7.	2.9	1
454	Independent Control of Mode Selection and Power Extraction in Terahertz Semiconductor Lasers. ACS Photonics, 2022, 9, 1973-1983.	6.6	1
455	Effect of TCA-depletion of extrinsic polypeptides on electron transport on oxidizing side of PS II. Science Bulletin, 1997, 42, 227-231.	1.7	0
456	Raman spectroscopy of single quantum well wires. Science Bulletin, 2000, 45, 2138-2141.	1.7	0
457	Free electron laser induced two-photon photoconductivity in Hg1-xCdxTe. Science in China Series A: Mathematics, 2001, 44, 1579-1584.	0.5	0
458	Realization of integrated narrow bandpass filters in the infrared region. , 0, , .		0
459	128 Channels of Integrated Filter Array in the NIR Region Fabricated by Using The Combinatorial Deposition Technique. , 2006, , .		0
460	Formation Energy of Arsenic Impurities in MCT: First-Principles Study., 2006,,.		0
461	Electron microscopy study of different stages of oxidation of Tiâ€47Alâ€2Nbâ€2Crâ€0.15B and Tiâ€45Alâ€15Nb 900°C. Journal of Microscopy, 2008, 231, 124-133.	at 1.8	0
462	Study of InGaN/GaN/InGaN multi-layer barrier in GaN-based light emitting diode. , 2011, , .		0
463	EFFECTS OF Ge MOLE FRACTION ON ELECTRICAL CHARACTERISTICS OF STRAINED SiGe CHANNEL p -MOSFET., 2011,,.		0
464	The hybridization of plasmons in GaN-based two-dimensional channels. , 2012, , .		0
465	Optimization of InSb infrared focal plane arrays. , 2012, , .		0
466	Electrons: A strange particle with an intelligent spirit $\#x2014$; As seen from IR and Thz spectroscopy., 2012,,.		0
467	A bisection-function technique to characterize heat transport in high-power GaN-based light-emitting-diodes package. , 2012, , .		0
468	The tunable plasmonic resonant absorption in grating-gate GaN-based HEMTs for THz detection. , 2012, , .		0

#	Article	IF	CITATIONS
469	First-principles study of defects distribution with different arsenic doping source in HgCdTe., 2012,,.		О
470	Hydrothermal Synthesis and Optical Properties of Single-Crystal EuPO4 Nanowires. , 2012, , .		0
471	Introduction to the OQE special issue on Numerical Simulation of Optoelectronic Devices (NUSOD'11). Optical and Quantum Electronics, 2012, 44, 65-65.	3.3	O
472	Introduction to the OQE special issue on numerical simulation of optoelectronic devices NUSOD'12. Optical and Quantum Electronics, 2013, 45, 571-571.	3.3	0
473	Effect of V/III ratio on the structural quality of InAs nanowires. , 2014, , .		O
474	Cavity modes in hybrid structure of QWIP and plasmonic cavity. , 2014, , .		0
475	Twisted split-ring chiral metamaterials for broadband circular dichroism. , 2014, , .		O
476	Strong and broadband circular dichroism based on helix-like chiral metamaterials., 2014,,.		0
477	High performance solar selective absorbers constructed by multilayers., 2015,,.		O
478	Plasmon resonances of terahertz absorption in nano-patterned graphene., 2015,,.		0
479	Room-temperature, high-gain, broad-spectrum InAs nanowire infrared photodetectors., 2015,,.		O
480	Plasmonic enhanced optical coupling effect on the quantum well infrared photodetector., 2015,,.		0
481	An efficiency and response enhanced metamaterial single photon detector. , 2016, , .		О
482	Cut-off wavelength extension of QWIP by MIM plasmonic cavity. , 2016, , .		0
483	Remarkable optical coupling enhancement with laser selective focusing devices. Optical and Quantum Electronics, 2016, 48, 1.	3.3	О
484	In-situ Observation of Cu Filaments Evolution in SiO2 layer. Microscopy and Microanalysis, 2017, 23, 1622-1623.	0.4	0
485	Plasmonic micro-disk cavity quantum well infrared photodetectors. , 2017, , .		0
486	Real-space nano-imaging of hot electron dynamics. , 2017, , .		0

#	Article	IF	CITATIONS
487	Nanothermometry of electrons and phonons. , 2018, , .		0
488	Scanning THz Noise Microscopy of Operating Nano-devices. , 2018, , .		0
489	Dielectric Metalens and Its Application in Near-Infrared Single Photon Detection. , 2018, , .		0
490	Axiotaxy driven growth of belt-shaped InAs nanowires in molecular beam epitaxy. Nano Research, 2021, 14, 2330.	10.4	0
491	Topological Dirac Semimetals for Ultra-Sensitive Terahertz Detection. , 2021, , .		0
492	Metamaterial integrated circular polarization quantum well infrared photodetectors., 2021,,.		0
493	Multiple Modes Response of Coâ€Aperture 2D/1D Phototransistors. Advanced Materials Interfaces, 0, , 2102568.	3.7	0