
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823780/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Postâ€glacial establishment of locally adapted fish populations over a steep salinity gradient. Journal of Evolutionary Biology, 2021, 34, 138-156.	1.7	28
2	Sperm performance limits the reproduction of an invasive fish in novel salinities. Diversity and Distributions, 2021, 27, 1091-1105.	4.1	9
3	Sperm adaptation in relation to salinity in three goby species. Journal of Fish Biology, 2021, 99, 607-613.	1.6	4
4	Ancestral Sperm Ecotypes Reveal Multiple Invasions of a Non-Native Fish in Northern Europe. Cells, 2021, 10, 1743.	4.1	6
5	Impact of Lagrangian Sea Surface Temperature Variability on Southern Ocean Phytoplankton Community Growth Rates. Global Biogeochemical Cycles, 2021, 35, e2020GB006880.	4.9	10
6	Ocean acidification as a multiple driver: how interactions between changing seawater carbonate parameters affect marine life. Marine and Freshwater Research, 2020, 71, 263.	1.3	62
7	Adjustments in fatty acid composition is a mechanism that can explain resilience to marine heatwaves and future ocean conditions in the habitatâ€forming seaweed <i>Phyllospora comosa</i> (Labillardière) C.Agardh. Global Change Biology, 2020, 26, 3512-3524.	9.5	38
8	Evidence of rapid adaptive trait change to local salinity in the sperm of an invasive fish. Evolutionary Applications, 2020, 13, 533-544.	3.1	22
9	Toxic Algae Silence Physiological Responses to Multiple Climate Drivers in a Tropical Marine Food Chain. Frontiers in Physiology, 2019, 10, 373.	2.8	6
10	Factors affecting formation of adventitious branches in the seaweeds Fucus vesiculosus and F. radicans. BMC Ecology, 2019, 19, 22.	3.0	5
11	Sperm motility of oysters from distinct populations differs in response to ocean acidification and freshening. Scientific Reports, 2019, 9, 7970.	3.3	13
12	Societal causes of, and responses to, ocean acidification. Ambio, 2019, 48, 816-830.	5.5	6
13	Ecological and functional consequences of coastal ocean acidification: Perspectives from the Baltic-Skagerrak System. Ambio, 2019, 48, 831-854.	5.5	11
14	Experimental strategies to assess the biological ramifications of multiple drivers of global ocean change—A review. Global Change Biology, 2018, 24, 2239-2261.	9.5	285
15	Influence of bacteria on shell dissolution in dead gastropod larvae and adult Limacina helicina pteropods under ocean acidification conditions. Marine Biology, 2018, 165, 1.	1.5	4
16	Oceanographic barriers to gene flow promote genetic subdivision of the tunicate Ciona intestinalis in a North Sea archipelago. Marine Biology, 2018, 165, 126.	1.5	13
17	Long-term exposure to acidification disrupts reproduction in a marine invertebrate. PLoS ONE, 2018, 13, e0192036.	2.5	13
18	Immigrant reproductive dysfunction facilitates ecological speciation. Evolution; International Journal of Organic Evolution, 2017, 71, 2510-2521.	2.3	22

#	Article	IF	CITATIONS
19	Low sensitivity of reproductive life-stages in the Pacific oyster (Crassostrea gigas) to abamectin. Chemosphere, 2017, 182, 665-671.	8.2	6
20	Climate change and the threat of novel marine predators in Antarctica. Ecosphere, 2017, 8, e02017.	2.2	20
21	Analysis of aquaporins from the euryhaline barnacle Balanus improvisus reveals differential expression in response to changes in salinity. PLoS ONE, 2017, 12, e0181192.	2.5	27
22	Variable Individual- and Population- Level Responses to Ocean Acidification. Frontiers in Marine Science, 2016, 3, .	2.5	12
23	The Story of a Hitchhiker: Population Genetic Patterns in the Invasive Barnacle Balanus(Amphibalanus) improvisus Darwin 1854. PLoS ONE, 2016, 11, e0147082.	2.5	20
24	A phenological shift in the time of recruitment of the shipworm, <i>Teredo navalis</i> L., mirrors marine climate change. Ecology and Evolution, 2016, 6, 3862-3870.	1.9	8
25	Population and life-stage specific sensitivities to temperature and salinity stress in barnacles. Scientific Reports, 2016, 6, 32263.	3.3	18
26	Ocean acidification has lethal and sub-lethal effects on larval development of yellowfin tuna, Thunnus albacares. Journal of Experimental Marine Biology and Ecology, 2016, 482, 18-24.	1.5	54
27	Pathogenic marine microbes influence the effects of climate change on a commercially important tropical bivalve. Scientific Reports, 2016, 6, 32413.	3.3	23
28	Sperm Accumulated Against Surface: A novel alternative bioassay for environmental monitoring. Marine Environmental Research, 2016, 114, 51-57.	2.5	12
29	Communityâ€level effects of rapid experimental warming and consumer loss outweigh effects of rapid ocean acidification. Oikos, 2015, 124, 1040-1049.	2.7	16
30	Ocean acidification impacts on sperm mitochondrial membrane potential bring sperm swimming behaviour near its tipping point. Journal of Experimental Biology, 2015, 218, 1084-1090.	1.7	38
31	Distribution and abundance of teredinid recruits along the Swedish coast – are shipworms invading the Baltic Sea?. Journal of the Marine Biological Association of the United Kingdom, 2015, 95, 783-790.	0.8	9
32	No barrier to emergence of bathyal king crabs on the Antarctic shelf. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 12997-13002.	7.1	40
33	The potential impact of ocean acidification upon eggs and larvae of yellowfin tuna (Thunnus) Tj ETQq1 1 0.7843	14 rgBT /(1.4	Dverlock 10 T
34	Climate Envelope Modeling and Dispersal Simulations Show Little Risk of Range Extension of the Shipworm, Teredo navalis (L.), in the Baltic Sea. PLoS ONE, 2015, 10, e0119217.	2.5	12
35	Importance of plasticity and local adaptation for coping with changing salinity in coastal areas: a test case with barnacles in the Baltic Sea. BMC Evolutionary Biology, 2014, 14, 156.	3.2	37
36	Variable salinity tolerance in ascidian larvae is primarily a plastic response to the parental environment. Evolutionary Ecology, 2014, 28, 561-572.	1.2	22

JON N HAVENHAND

#	Article	IF	CITATIONS
37	Interactive Effects of Ocean Acidification, Elevated Temperature, and Reduced Salinity on Early-Life Stages of the Pacific Oyster. Environmental Science & Technology, 2014, 48, 10079-10088.	10.0	102
38	Habitat traits and food availability determine the response of marine invertebrates to ocean acidification. Global Change Biology, 2014, 20, 765-777.	9.5	112
39	Sperm swimming in the polychaete Galeolaria caespitosa shows substantial inter-individual variability in response to future ocean acidification. Marine Pollution Bulletin, 2014, 78, 213-217.	5.0	26
40	Investigating a possible role for the bacterial signal molecules Nâ€acylhomoserine lactones in <i><scp>B</scp>alanus improvisus</i> cyprid settlement. Molecular Ecology, 2013, 22, 2588-2602.	3.9	37
41	Larval development of the barnacle Amphibalanus improvisus responds variably but robustly to near-future ocean acidification. ICES Journal of Marine Science, 2013, 70, 805-811.	2.5	16
42	Consumers mediate the effects of experimental ocean acidification and warming on primary producers. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 8603-8608.	7.1	131
43	Effects of Ocean Acidification and Warming on Sperm Activity and Early Life Stages of the Mediterranean Mussel (Mytilus galloprovincialis). Water (Switzerland), 2013, 5, 1890-1915.	2.7	42
44	Molecular Characterization of the α-Subunit of Na+/K+ ATPase from the Euryhaline Barnacle Balanus improvisus Reveals Multiple Genes and Differential Expression of Alternative Splice Variants. PLoS ONE, 2013, 8, e77069.	2.5	31
45	Yoga for reducing perceived stress and back pain at work. Occupational Medicine, 2012, 62, 606-612.	1.4	72
46	Comparing reconstructed past variations and future projections of the Baltic Sea ecosystem—first results from multi-model ensemble simulations. Environmental Research Letters, 2012, 7, 034005.	5.2	116
47	How will Ocean Acidification Affect Baltic Sea Ecosystems? An Assessment of Plausible Impacts on Key Functional Groups. Ambio, 2012, 41, 637-644.	5.5	55
48	Individual Variability in Reproductive Success Determines Winners and Losers under Ocean Acidification: A Case Study with Sea Urchins. PLoS ONE, 2012, 7, e53118.	2.5	88
49	Experimental climate change weakens the insurance effect of biodiversity. Ecology Letters, 2012, 15, 864-872.	6.4	70
50	Impacts of Climate Change, Including Acidification, on Marine Ecosystems and Fisheries. , 2012, , 129-160.		1
51	The effectiveness of yoga for the improvement of well-being and resilience to stress in the workplace. Scandinavian Journal of Work, Environment and Health, 2011, 37, 70-76.	3.4	119
52	Effect of ocean acidification on marine fish sperm (Baltic cod: <i>Gadus) Tj ETQq0 0 0 rgBT /Over</i>	lock]0 Tf	50 ₃₅ 142 Td (m
53	Indiscriminate Males: Mating Behaviour of a Marine Snail Compromised by a Sexual Conflict?. PLoS ONE, 2010, 5, e12005.	2.5	27

54Near-future levels of ocean acidification do not affect sperm motility and fertilization kinetics in the
oyster & amp;lt;i& amp;gt;Crassostrea gigas& amp;lt;/i& amp;gt;. Biogeosciences, 2009, 6, 3009-3015.3.3106

#	Article	IF	CITATIONS
55	Fertilization Strategies. Ecological Studies, 2009, , 149-164.	1.2	12
56	MALE DISCRIMINATION OF FEMALE MUCOUS TRAILS PERMITS ASSORTATIVE MATING IN A MARINE SNAIL SPECIES. Evolution; International Journal of Organic Evolution, 2008, 62, 3178-3184.	2.3	62
57	BARRIERS TO CROSS-FERTILIZATION BETWEEN POPULATIONS OF A WIDELY DISPERSED POLYCHAETE SPECIES ARE UNLIKELY TO HAVE ARISEN THROUGH GAMETIC COMPATIBILITY ARMS-RACES. Evolution; International Journal of Organic Evolution, 2008, 62, 3041-3055.	5 2.3	24
58	CO2-driven acidification radically affects larval survival and development in marine organisms. Comparative Biochemistry and Physiology Part A, Molecular & Integrative Physiology, 2008, 150, S170.	1.8	4
59	Near-future levels of ocean acidification reduce fertilization success in a sea urchin. Current Biology, 2008, 18, R651-R652.	3.9	229
60	Near-future level of CO2-driven ocean acidification radically affects larval survival and development in the brittlestar Ophiothrix fragilis. Marine Ecology - Progress Series, 2008, 373, 285-294.	1.9	274
61	Megalodicopia hians in the Monterey submarine canyon: Distribution, larval development, and culture. Deep-Sea Research Part I: Oceanographic Research Papers, 2006, 53, 215-222.	1.4	8
62	Sperm motility and longevity in the giant cuttlefish, Sepia apama (Mollusca: Cephalopoda). Marine Biology, 2006, 148, 559-566.	1.5	24
63	Effects of constant and varying temperatures on the development of blue swimmer crab (Portunus) Tj ETQq1 1 Journal of Experimental Marine Biology and Ecology, 2006, 329, 218-229.	l 0.784314 1.5	rgBT /Overloc 39
64	Linking male and female morphology to reproductive success in captive southern calamary (Sepioteuthis australis). Marine and Freshwater Research, 2005, 56, 933.	1.3	7
65	Transient sexual mimicry leads to fertilization. Nature, 2005, 433, 212-212.	27.8	100
66	Evidence for biased use of sperm sources in wild female giant cuttlefish (Sepia apama). Proceedings of the Royal Society B: Biological Sciences, 2005, 272, 1047-1051.	2.6	57
67	Physiological acclimation to decreased water temperature and the relative importance of water viscosity in determining the feeding performance of larvae of a serpulid polychaete. Journal of Plankton Research, 2005, 27, 875-879.	1.8	26
68	Effects of temperature on sperm swimming behaviour, respiration and fertilization success in the serpulid polychaete, <i>Galeolaria caespitosa</i> (Annelida: Serpulidae). Invertebrate Reproduction and Development, 2005, 48, 7-17.	0.8	46
69	INCREASING INTRASPECIFIC DIVERSITY ENHANCES SETTLING SUCCESS IN A MARINE INVERTEBRATE. Ecology, 2005, 86, 3219-3224.	3.2	58
70	Temporal and spatial distribution and abundance of blue swimmer crab (Portunus pelagicus) larvae in a temperate gulf. Marine and Freshwater Research, 2004, 55, 809.	1.3	10
71	Behavioural and genetic assessment of reproductive success in a spawning aggregation of the Australian giant cuttlefish, Sepia apama. Animal Behaviour, 2004, 67, 1043-1050.	1.9	75
72	Polymorphic microsatellite markers for paternity assessment in southern calamari Sepioteuthis australis (Cephalopoda: Loliginidae). Molecular Ecology Notes, 2003, 3, 654-655.	1.7	5

#	Article	IF	CITATIONS
73	Reproductive Behavior in the Squid Sepioteuthis australis From South Australia: Interactions on the Spawning Grounds. Biological Bulletin, 2003, 204, 305-317.	1.8	56
74	Reproductive Behavior in the Squid Sepioteuthis australis From South Australia: Ethogram of Reproductive Body Patterns. Biological Bulletin, 2003, 204, 290-304.	1.8	24
75	Variation in sperm swimming behaviour and its effect on fertilization success in the serpulid polychaete <i>Galeolaria caespitosa</i> . Invertebrate Reproduction and Development, 2002, 41, 21-26.	0.8	56
76	Physiological versus viscosity-induced effects of an acute reduction in water temperature on microsphere ingestion by trochophore larvae of the serpulid polychaete Galeolaria caespitosa. Journal of Plankton Research, 1998, 20, 2153-2164.	1.8	48
77	Karyotype, nucleolus organiser regions and constitutive heterochromatin in Ostrea angasi (Molluscae: Bivalvia): evidence of taxonomic relationships within the Ostreidae. Marine Biology, 1997, 127, 443-448.	1.5	34
78	Physiological versus viscosity-induced effects of water temperature on the swimming and sinking velocity of larvae of the serpulid polychaete Galeolaria caespitosa. Marine Ecology - Progress Series, 1997, 159, 209-218.	1.9	23
79	Chemical Mediation of Sperm Activity and Longevity in the Solitary Ascidians Ciona intestinalis and Ascidiella aspersa. Biological Bulletin, 1996, 190, 329-335.	1.8	46
80	Spawning and Dispersal in <i>Ciona intestinalis</i> (L.). Marine Ecology, 1993, 14, 53-66.	1,1	57
81	Egg to juvenile period, generation time, and the evolution of larval type in marine invertebrates. Marine Ecology - Progress Series, 1993, 97, 247-260.	1.9	51
82	Fertilisation and the potential for dispersal of gametes and larvae in the Solitary Ascidian <i>Ascidia Mentula</i> M¼ller. Ophelia, 1991, 33, 01-15.	0.3	25
83	Larval metamorphosis of the opisthobranch molluscAdalaria proxima(Gastropoda: Nudibranchia): the effects of choline and elevated potassium ion concentration. Journal of the Marine Biological Association of the United Kingdom, 1991, 71, 53-72.	0.8	42
84	On the Behaviour of Opisthobranch Larvae. Journal of Molluscan Studies, 1991, 57, 119-131.	1.2	10
85	NUDIBRANCH-BRYOZOAN ASSOCIATIONS: THE QUANTIFICATION OF INGESTION AND SOME OBSERVATIONS ON PARTIAL PREDATION AMONG DORIDOIDEA. Journal of Molluscan Studies, 1989, 55, 245-259.	1.2	15
86	Reproductive Effort of the Nudibranch Molluscs Adalaria proxima (Alder & Hancock) and Onchidoris muricata (Muller): An Evaluation of Techniques. Functional Ecology, 1989, 3, 153.	3.6	26
87	Effects of the planktonic flagellate Chrysochromulina polylepis Manton et Park on fertilization and early development of the ascidian Ciona intestinalis (L.) and the blue mussel Mytilus edulis L. Journal of Experimental Marine Biology and Ecology, 1988, 124, 65-71.	1.5	34
88	Physiological ecology of Adalaria proxima (Alder et Hancock) and Onchidoris muricata (Müller) (Gastropoda: Nudibranchia). I. Freeding, growth, and respiration. Journal of Experimental Marine Biology and Ecology, 1988, 118, 151-172.	1.5	15
89	Physiological ecology of Adalaria proxima (Alder et Hancock) and Onchidoris muricata (Müller) (Gastropoda: Nudibranchia). II. Reproduction. Journal of Experimental Marine Biology and Ecology, 1988, 118, 173-189.	1.5	16
90	Physiological ecology of Adalaria proxima (Alder et Hancock) and Onchidoris muricata (Müller) (Gastropoda: Nudibranchia). III. Energy budgets. Journal of Experimental Marine Biology and Ecology, 1988, 118, 191-205.	1.5	4

#	Article	IF	CITATIONS
91	Genetic Differentiation, Pelagic Larval Transport and Gene Flow between Local Populations of the Intertidal Marine Mollusc Adalaria proxima (Alder & Hancock). Functional Ecology, 1988, 2, 441.	3.6	28
92	Effects of tissue extract of adults on metamorphosis in Ascidia mentula O.F. Müller and Ascidiella scabra (O.F. Müller). Journal of Experimental Marine Biology and Ecology, 1987, 110, 171-181.	1.5	25
93	Estimates of biochemical genetic diversity within and between the nudibranch molluscs Adalaria proxima (Alder & Hancock) and Onchidoris muricata (Muller) (Doridacea: Onchidorididae). Journal of Experimental Marine Biology and Ecology, 1986, 95, 105-111.	1.5	12
94	Preliminary observations on the embryonic and larval development of three dorid nudibranchs. Journal of Molluscan Studies, 1985, 51, 97-99.	1.2	11
95	Molecular, behavioural and morphological comparisons of sperm adaptations in a fish with alternative reproductive tactics. Evolutionary Applications, 0, , .	3.1	1