Brian Kennett

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8237430/brian-kennett-publications-by-year.pdf

Version: 2024-04-10

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

62 16,940 120 347 h-index g-index citations papers 6.89 18,718 381 3.5 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
347	The seismic wavefield as seen by distributed acoustic sensing arrays: local, regional and teleseismic sources <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2022 , 478, 20210812	2.4	1
346	The relative behaviour of bulk and shear modulus as an indicator of the iron spin transition in the lower mantle. <i>Earth and Planetary Science Letters</i> , 2021 , 559, 116808	5.3	2
345	Azimuthal Variation of Lithospheric Heterogeneity in the Northwest Pacific Inferred From Po/So Propagation Characteristics and Anomalously Large Ground Motion of Deep In-Slab Earthquakes. <i>Journal of Geophysical Research: Solid Earth</i> , 2021 , 126, e2021JB021717	3.6	1
344	The transition from the Thomson Orogen to the North Australian Craton from seismic data. <i>Australian Journal of Earth Sciences</i> , 2021 , 68, 628-640	1.4	1
343	Radial earth models revisited. <i>Geophysical Journal International</i> , 2020 , 222, 2189-2204	2.6	6
342	Propagation of distinct Love-wave pulses from regional to teleseismic distances in continental and oceanic environments. <i>Geophysical Journal International</i> , 2020 , 221, 665-682	2.6	1
341	Intra-plate volcanism in North Queensland and eastern new Guinea: A cryptic mantle plume?. <i>Gondwana Research</i> , 2020 , 79, 209-216	5.1	3
340	Common-Reflection-Point-Based Prestack Depth Migration for Imaging Lithosphere in Python: Application to the Dense Warramunga Array in Northern Australia. <i>Seismological Research Letters</i> , 2020 , 91, 2890-2899	3	4
339	Unveiling a continent. Astronomy and Geophysics, 2020 , 61, 6.34-6.40	0.2	O
338	Towards constitutive equations for the deep Earth II: Shear properties under pressure. <i>Physics of the Earth and Planetary Interiors</i> , 2020 , 307, 106558	2.3	2
337	Preview of The Australian continent: a geophysical synthesis. <i>Preview</i> , 2019 , 2019, 39-48	0.2	1
336	Crustal Imaging With Bayesian Inversion of Teleseismic P Wave Coda Autocorrelation. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 5888-5906	3.6	12
335	Retrieval of Interstation Local Body Waves From Teleseismic Coda Correlations. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 2957-2969	3.6	4
334	The Significance of Long-Period Ground Motion at Regional to Teleseismic Distances From the 610-km Deep Mw 8.3 Sea of Okhotsk Earthquake of 24 May 2013. <i>Journal of Geophysical Research: Solid Earth</i> , 2019 , 124, 9075-9094	3.6	2
333	Significant P wave conversions from upgoing S waves generated by very deep earthquakes around Japan. <i>Progress in Earth and Planetary Science</i> , 2019 , 6,	3.9	2
332	Areal parameter estimates from multiple datasets. <i>Proceedings of the Royal Society A:</i> Mathematical, Physical and Engineering Sciences, 2019 , 475, 20190352	2.4	1
331	AusArray: Toward updatable, high-resolution seismic velocity models of the Australian lithosphere. <i>ASEG Extended Abstracts</i> , 2019 , 2019, 1-4	0.2	

330	Sn-wave velocity structure of the uppermost mantle beneath the Australian continent. <i>Geophysical Journal International</i> , 2018 , 213, 2071-2084	2.6	5	
329	Earth's Correlation Wavefield: Late Coda Correlation. <i>Geophysical Research Letters</i> , 2018 , 45, 3035-3042	4.9	33	
328	Evolution of the correlation wavefield extracted from seismic event coda. <i>Physics of the Earth and Planetary Interiors</i> , 2018 , 282, 100-109	2.3	4	
327	The nature of Earth's correlation wavefield: late coda of large earthquakes. <i>Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences</i> , 2018 , 474, 20180082	2.4	7	
326	The Australian Continent: A Geophysical Synthesis 2018,		8	
325	Regional Distance PL Phase in the Crustal Waveguide An Analog to the Teleseismic W Phase in the Upper-Mantle Waveguide. <i>Journal of Geophysical Research: Solid Earth</i> , 2018 , 123, 4007-4024	3.6	6	
324	Continental Lithospheric Layering Beneath Stable, Modified, and Destroyed Cratons from Seismic Daylight Imaging. <i>Geophysical Monograph Series</i> , 2018 , 155-176	1.1	1	
323	Lithospheric discontinuities in Central Australia. <i>Tectonophysics</i> , 2018 , 744, 10-22	3.1	15	
322	Mid-lithosphere discontinuities beneath the western and central North China Craton. <i>Geophysical Research Letters</i> , 2017 , 44, 1302-1310	4.9	39	
321	Crustal structure of a Proterozoic craton boundary: East Albany-Fraser Orogen, Western Australia, imaged with passive seismic and gravity anomaly data. <i>Precambrian Research</i> , 2017 , 296, 78-92	3.9	9	
320	Crustal surface wave velocity structure of the east Albany-Fraser Orogen, Western Australia, from ambient noise recordings. <i>Geophysical Journal International</i> , 2017 , 210, 1641-1651	2.6	2	
319	Simultaneous use of multiple seismic arrays. <i>Geophysical Journal International</i> , 2017 , ggx027	2.6	1	
318	Lg-wave attenuation in the Australian crust. <i>Tectonophysics</i> , 2017 , 717, 413-424	3.1	14	
317	High-frequency ground motion from Australian earthquakes. <i>Australian Journal of Earth Sciences</i> , 2017 , 64, 769-777	1.4	1	
316	Unusual Strong Ground Motion Across Japan From the 680[km Deep 30 May 2015 Ogasawara Islands Earthquake. <i>Journal of Geophysical Research: Solid Earth</i> , 2017 , 122, 8143-8162	3.6	13	
315	Pervasive seismic low-velocity zones within stagnant plates in the mantle transition zone: Thermal or compositional origin?. <i>Earth and Planetary Science Letters</i> , 2017 , 477, 1-13	5.3	25	
314	Towards constitutive equations for the deep Earth. <i>Physics of the Earth and Planetary Interiors</i> , 2017 , 270, 40-45	2.3	3	
313	Interactions of multi-scale heterogeneity in the lithosphere: Australia. <i>Tectonophysics</i> , 2017 , 717, 193-21	3 .1	20	

312	Enhanced waveguide effect for deep-focus earthquakes in the subducting Pacific slab produced by a metastable olivine wedge. <i>Journal of Geophysical Research: Solid Earth</i> , 2016 , 121, 6779-6796	3.6	8
311	Receiver structure from teleseisms: Autocorrelation and cross correlation. <i>Geophysical Research Letters</i> , 2016 , 43, 6234-6242	4.9	30
310	Uppermost mantle structure beneath eastern China and its surroundings from Pn and Sn tomography. <i>Geophysical Research Letters</i> , 2016 , 43, 3143-3149	4.9	13
309	Multiscale seismic heterogeneity in the continental lithosphere. <i>Geochemistry, Geophysics, Geosystems,</i> 2016 , 17, 791-809	3.6	15
308	Imaging architecture of the Jakarta Basin, Indonesia with transdimensional inversion of seismic noise. <i>Geophysical Journal International</i> , 2016 , 204, 918-931	2.6	37
307	Deep Crustal Seismic Reflection Profiling 2016 ,		6
306	Uppermost mantle structure of the Australian continent from Pn traveltime tomography. <i>Journal of Geophysical Research: Solid Earth</i> , 2016 , 121, 2004-2019	3.6	13
305	Uppermost mantle P wavespeed structure beneath eastern China and its surroundings. <i>Tectonophysics</i> , 2016 , 683, 12-26	3.1	10
304	Maximum depth of magnetisation of Australia, its uncertainty, and implications for Curie depth. <i>GeoResJ</i> , 2015 , 7, 70-77		17
303	Spiral-Arm Seismic Arrays. Bulletin of the Seismological Society of America, 2015, 105, 2109-2116	2.3	13
302	Lithospherellsthenosphere P-wave reflectivity across Australia. <i>Earth and Planetary Science Letters</i> , 2015 , 431, 225-235	5.3	37
301	Stacking autocorrelograms to map Moho depth with high spatial resolution in southeastern Australia. <i>Geophysical Research Letters</i> , 2015 , 42, 7490-7497	4.9	43
300	The lithosphere-asthenosphere transition and radial anisotropy beneath the Australian continent. <i>Geophysical Research Letters</i> , 2015 , 42, 3839-3846	4.9	26
299	The nature of the Moho in Australia from reflection profiling: A review. <i>GeoResJ</i> , 2015 , 5, 74-91		24
298	Toward the reconciliation of seismological and petrological perspectives on oceanic lithosphere heterogeneity. <i>Geochemistry, Geophysics, Geosystems</i> , 2015 , 16, 3129-3141	3.6	16
297	Anisotropy in the subducting slab: Observations from Philippine Sea plate events in Taiwan. <i>Geophysical Research Letters</i> , 2015 , 42, 10,248	4.9	3
296	New constraints on the current stress field and seismic velocity structure of the eastern Yilgarn Craton from mechanisms of local earthquakes. <i>Australian Journal of Earth Sciences</i> , 2015 , 62, 921-931	1.4	5
295	A review of crust and upper mantle structure beneath the Indian subcontinent. <i>Tectonophysics</i> , 2015 , 644-645, 1-21	3.1	47

(2013-2015)

294	Origin of Lateral Heterogeneities in the Upper Mantle Beneath South-east Australia from Seismic Tomography 2015 , 47-78		7	
293	Comparison of crustal and upper mantle heterogeneity in different time periods: Indonesian subduction zone to northern Australia. <i>Earthquake Science</i> , 2014 , 27, 47-55	1.5		
292	Tracking earthquake source evolution in 3-D. <i>Geophysical Journal International</i> , 2014 , 198, 867-879	2.6	3	
291	Transportable seismic array tomography in southeast Australia: Illuminating the transition from Proterozoic to Phanerozoic lithosphere. <i>Lithos</i> , 2014 , 189, 65-76	2.9	27	
290	Tracking high-frequency seismic source evolution: 2004 Mw 8.1 Macquarie event. <i>Geophysical Research Letters</i> , 2014 , 41, 1187-1193	4.9	13	
289	Progress in Deep Seismic Reflection Transects Across Australia. <i>Preview</i> , 2014 , 2014, 47-50	0.2		
288	Practical Earthquake Location on a Continental Scale in Australia Using the AuSREM 3D Velocity Model. <i>Bulletin of the Seismological Society of America</i> , 2014 , 104, 2755-2767	2.3	4	
287	High-frequency Po/So guided waves in the oceanic lithosphere: Illeterogeneity and attenuation. <i>Geophysical Journal International</i> , 2014 , 199, 614-630	2.6	18	
286	Structure of the Mt Isa region from seismic ambient noise tomography. <i>Australian Journal of Earth Sciences</i> , 2013 , 60, 707-718	1.4	5	
285	High-frequency Po/So guided waves in the oceanic lithosphere: Ilbng-distance propagation. <i>Geophysical Journal International</i> , 2013 , 195, 1862-1877	2.6	29	
284	Separating intrinsic and apparent anisotropy. <i>Physics of the Earth and Planetary Interiors</i> , 2013 , 219, 11-	20.3	50	
283	A review of the 2011 Tohoku-Oki earthquake (Mw 9.0): Large-scale rupture across heterogeneous plate coupling. <i>Tectonophysics</i> , 2013 , 586, 15-34	3.1	95	
282	100years of seismic research on the Moho. <i>Tectonophysics</i> , 2013 , 609, 9-44	3.1	30	
281	Australia's Moho: A test of the usefulness of gravity modelling for the determination of Moho depth. <i>Tectonophysics</i> , 2013 , 609, 468-479	3.1	52	
280	Imaging crustal structure variation across southeastern Australia. <i>Tectonophysics</i> , 2013 , 582, 112-125	3.1	15	
279	Role of lithosphere in intra-continental deformation: Central Australia. <i>Gondwana Research</i> , 2013 , 24, 958-968	5.1	24	
278	The Moho in Australia and New Zealand. <i>Tectonophysics</i> , 2013 , 609, 288-298	3.1	66	
277	Australian Seismological Reference Model (AuSREM): mantle component. <i>Geophysical Journal International</i> , 2013 , 192, 871-887	2.6	64	

276	Crustal architecture of the Capricorn Orogen, Western Australia and associated metallogeny. <i>Australian Journal of Earth Sciences</i> , 2013 , 60, 681-705	1.4	105
275	Crustal properties from seismic station autocorrelograms. <i>Geophysical Journal International</i> , 2013 , 192, 861-870	2.6	66
274	Australian Seismological Reference Model (AuSREM): crustal component. <i>Geophysical Journal International</i> , 2013 , 192, 190-206	2.6	45
273	Crustal complexity in the Lachlan Orogen revealed from teleseismic receiver functions. <i>Australian Journal of Earth Sciences</i> , 2013 , 60, 413-430	1.4	5
272	High-frequency waves guided by the subducted plates underneath Taiwan and their association with seismic intensity anomalies. <i>Journal of Geophysical Research: Solid Earth</i> , 2013 , 118, 665-680	3.6	13
271	Multistep modelling of receiver-based seismic and ambient noise data from WOMBAT array: crustal structure beneath southeast Australia. <i>Geophysical Journal International</i> , 2012 , 189, 1680-1700	2.6	9
270	Probabilistic surface reconstruction from multiple data sets: An example for the Australian Moho. <i>Journal of Geophysical Research</i> , 2012 , 117,		45
269	A unified concept for comparison of seismograms using transfer functions. <i>Geophysical Journal International</i> , 2012 , no-no	2.6	7
268	Interlocking of heterogeneous plate coupling and aftershock area expansion pattern for the 2011 Tohoku-Oki Mw9 earthquake. <i>Geophysical Research Letters</i> , 2012 , 39, n/a-n/a	4.9	15
267	Crustal structure of Australia from ambient seismic noise tomography. <i>Journal of Geophysical Research</i> , 2012 , 117, n/a-n/a		67
266	AuSREM: Australian Seismological Reference Model. Australian Journal of Earth Sciences, 2012, 59, 1091	-1.403	34
265	Lithospheric Framework of Australia. <i>Episodes</i> , 2012 , 35, 9-22	1.6	22
264	Structural controls on the Mw 9.0 2011 Offshore-Tohoku earthquake. <i>Earth and Planetary Science Letters</i> , 2011 , 310, 462-467	5.3	13
263	AusMoho: the variation of Moho depth in Australia. <i>Geophysical Journal International</i> , 2011 , 187, 946-95	8 .6	93
262	The structure of the upper mantle beneath the Delamerian and Lachlan orogens from simultaneous inversion of multiple teleseismic datasets. <i>Gondwana Research</i> , 2011 , 19, 788-799	5.1	38
261	Seismic wave attenuation beneath the Australasian region. <i>Australian Journal of Earth Sciences</i> , 2011 , 58, 285-295	1.4	25
260	Full waveform tomography for radially anisotropic structure: New insights into present and past states of the Australasian upper mantle. <i>Earth and Planetary Science Letters</i> , 2010 , 290, 270-280	5.3	145
259	Steep reflections from the earth's core reveal small-scale heterogeneity in the upper mantle. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 178, 80-91	2.3	19

(2008-2010)

258	Tears or thinning? Subduction structures in the Pacific plate beneath the Japanese Islands. <i>Physics of the Earth and Planetary Interiors</i> , 2010 , 180, 52-58	2.3	27
257	Ambient seismic noise tomography of Australian continent. <i>Tectonophysics</i> , 2010 , 481, 116-125	3.1	114
256	Reply to comment by S. Crampin on Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves Geophysical Journal International, 2009, 177, 99-103	2.6	
255	On the inner-outer core density contrast from PKiKP/PcP amplitude ratios and uncertainties caused by seismic noise. <i>Geophysical Journal International</i> , 2009 , 179, 425-443	2.6	45
254	Full seismic waveform tomography for upper-mantle structure in the Australasian region using adjoint methods. <i>Geophysical Journal International</i> , 2009 , 179, 1703-1725	2.6	275
253	Plate reconstructions and tomography reveal a fossil lower mantle slab below the Tasman Sea. <i>Earth and Planetary Science Letters</i> , 2009 , 278, 143-151	5.3	43
252	Optimal equations of state for mantle minerals from simultaneous non-linear inversion of multiple datasets. <i>Physics of the Earth and Planetary Interiors</i> , 2009 , 176, 98-108	2.3	22
251	NW Australian intraplate seismicity and stress regime. <i>Journal of Geophysical Research</i> , 2009 , 114,		16
250	Upper mantle anisotropy beneath Australia and Tahiti from P wave polarization: Implications for real-time earthquake location. <i>Journal of Geophysical Research</i> , 2009 , 114,		26
249	Seismic Wave Propagation in Stratified Media 2009 ,		14
249 248	Roudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature</i>	18.3	14 57
	Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature</i>	18.3	
248	Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature Geoscience</i> , 2008 , 1, 196-201 Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton.		57
248 247	Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature Geoscience</i> , 2008 , 1, 196-201 Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. <i>Geophysical Journal International</i> , 2008 , 172, 363-382 Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. <i>Geophysical</i>	2.6	57 46
248 247 246	Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature Geoscience</i> , 2008 , 1, 196-201 Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. <i>Geophysical Journal International</i> , 2008 , 172, 363-382 Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. <i>Geophysical Journal International</i> , 2008 , 172, 1016-1032 Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. <i>Geophysical Journal International</i> , 2008 , 175, 665-685 Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography.	2.6	57 46 66
248247246245	Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature Geoscience</i> , 2008 , 1, 196-201 Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. <i>Geophysical Journal International</i> , 2008 , 172, 363-382 Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. <i>Geophysical Journal International</i> , 2008 , 172, 1016-1032 Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. <i>Geophysical Journal International</i> , 2008 , 175, 665-685 Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography.	2.6 2.6	57 46 66 170
248247246245244	Boudinage of a stretching slablet implicated in earthquakes beneath the Hindu Kush. <i>Nature Geoscience</i> , 2008, 1, 196-201 Stochastic waveguide in the lithosphere: Indonesian subduction zone to Australian craton. <i>Geophysical Journal International</i> , 2008, 172, 363-382 Global anisotropic phase velocity maps for higher mode Love and Rayleigh waves. <i>Geophysical Journal International</i> , 2008, 172, 1016-1032 Theoretical background for continental- and global-scale full-waveform inversion in the time-frequency domain. <i>Geophysical Journal International</i> , 2008, 175, 665-685 Steps in lithospheric thickness within eastern Australia, evidence from surface wave tomography. <i>Tectonics</i> , 2008, 27, n/a-n/a	2.6 2.6 2.6 4.3	57 46 66 170

240	Automatic infrasonic signal detection using the Hough transform. <i>Journal of Geophysical Research</i> , 2008 , 113,		14
239	Core structure and heterogeneity: a seismological perspective*View all notes. <i>Australian Journal of Earth Sciences</i> , 2008 , 55, 419-431	1.4	19
238	Dynamic Earth: crustal and mantle heterogeneity. Australian Journal of Earth Sciences, 2008, 55, 265-2	791.4	18
237	Geophysical Continua: Deformation in the Earth's Interior 2008,		12
236	Global Love wave overtone measurements. Geophysical Research Letters, 2007, 34,	4.9	22
235	A slab in depth: Three-dimensional geometry and evolution of the Indo-Australian plate. <i>Geochemistry, Geophysics, Geosystems</i> , 2007 , 8, n/a-n/a	3.6	68
234	New constraints on the seismic structure of West Australia: Evidence for terrane stabilization prior to the assembly of an ancient continent?. <i>Geology</i> , 2007 , 35, 379	5	30
233	Comparison of Location Procedures: The Kara Sea Event of 16 August 1997. <i>Bulletin of the Seismological Society of America</i> , 2007 , 97, 389-400	2.3	22
232	Developments in passive seismic techniques through the ANSIR National Research Facility. <i>ASEG Extended Abstracts</i> , 2006 , 2006, 1-5	0.2	1
231	Insights into the structure of the upper mantle beneath the Murray basin from 3D teleseismic tomography. <i>Australian Journal of Earth Sciences</i> , 2006 , 53, 595-604	1.4	26
230	Three-dimensional visualization of a near-vertical slab tear beneath the southern Mariana arc. <i>Geochemistry, Geophysics, Geosystems</i> , 2006 , 7, n/a-n/a	3.6	47
229	Spatial and temporal evolution of the subducting Pacific plate structure along the western Pacific margin. <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		72
228	Lithospheric structure of Tasmania from a novel form of teleseismic tomography. <i>Journal of Geophysical Research</i> , 2006 , 111, n/a-n/a		86
227	Evolution of mantle structure beneath the northwest Pacific: Evidence from seismic tomography and paleogeographic reconstructions. <i>Tectonics</i> , 2006 , 25, n/a-n/a	4.3	19
226	The apparently isotropic Australian upper mantle. <i>Geophysical Research Letters</i> , 2006 , 33,	4.9	21
225	Morphology of the distorted subducted Pacific slab beneath the Hokkaido corner, Japan. <i>Physics of the Earth and Planetary Interiors</i> , 2006 , 156, 1-11	2.3	28
224	Non-linear methods for event location in a global context. <i>Physics of the Earth and Planetary Interiors</i> , 2006 , 158, 46-54	2.3	10
223	On seismological reference models and the perceived nature of heterogeneity. <i>Physics of the Earth and Planetary Interiors</i> , 2006 , 159, 129-139	2.3	18

(2004-2006)

222	An integrated multi-scale 3D seismic model of the Archaean Yilgarn Craton, Australia. <i>Tectonophysics</i> , 2006 , 420, 75-90	3.1	23
221	Detailed teleseismic imaging of the crust and upper mantle beneath southeast Australia. <i>ASEG Extended Abstracts</i> , 2006 , 2006, 1-5	0.2	O
220	Developments in passive seismic techniques through the ANSIR National Research Facility. <i>Exploration Geophysics</i> , 2006 , 37, 278-285	1	3
219	Contrasts in lithospheric structure within the Australian craton[hsights from surface wave tomography. <i>Earth and Planetary Science Letters</i> , 2005 , 231, 163-176	5.3	132
218	Heterogeneity within the subducting Pacific slab beneath the IzuBoninMariana arc: Evidence from tomography using 3D ray tracing inversion techniques. <i>Earth and Planetary Science Letters</i> , 2005 , 235, 331-342	5.3	59
217	Continental scale shear wave splitting analysis: Investigation of seismic anisotropy underneath the Australian continent. <i>Earth and Planetary Science Letters</i> , 2005 , 236, 106-119	5.3	40
216	The relationship of the seismic source and subduction zone structure for the 2004 December 26 Sumatra Andaman earthquake. <i>Earth and Planetary Science Letters</i> , 2005 , 239, 1-8	5.3	45
215	Stochastic features of scattering. <i>Physics of the Earth and Planetary Interiors</i> , 2005 , 148, 131-148	2.3	15
214	Studies of the Earth's Deep Interior E ighth Symposium. <i>Physics of the Earth and Planetary Interiors</i> , 2005 , 153, 1-2	2.3	8
213	Quasi-spherical approach for seismic wave modeling in a 2-D slice of a global Earth model with lateral heterogeneity. <i>Geophysical Research Letters</i> , 2005 , 32,	4.9	19
212	Subduction zone guided waves and the heterogeneity structure of the subducted plate: Intensity anomalies in northern Japan. <i>Journal of Geophysical Research</i> , 2005 , 110,		109
211	Sensitivity kernels for finite-frequency surface waves. <i>Geophysical Journal International</i> , 2005 , 162, 910	-9 26	39
210	Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. <i>Nature</i> , 2005 , 433, 509-12	50.4	232
209	Contrasts in mantle structure beneath Australia: relation to Tasman Lines?. <i>Australian Journal of Earth Sciences</i> , 2004 , 51, 563-569	1.4	45
208	Rapid estimation of relative and absolute delay times across a network by adaptive stacking. <i>Geophysical Journal International</i> , 2004 , 157, 332-340	2.6	109
207	Consistency regions in non-linear inversion. <i>Geophysical Journal International</i> , 2004 , 157, 583-588	2.6	5
206	Scattering of elastic waves in media with a random distribution of fluid-filled cavities: theory and numerical modelling. <i>Geophysical Journal International</i> , 2004 , 159, 961-977	2.6	8
205	Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects. <i>Journal of Geophysical Research</i> , 2004 , 109,		97

204	Effects of the density perturbation in scattering. <i>Geophysical Research Letters</i> , 2004 , 31, n/a-n/a	4.9	5
203	Imaging changes in morphology, geometry, and physical properties of the subducting Pacific plate along the IzuBoninMariana arc. <i>Earth and Planetary Science Letters</i> , 2004 , 224, 363-370	5.3	53
202	Seismic heterogeneity in the mantleEtrong shear wave signature of slabs from joint tomography. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 146, 87-100	2.3	35
201	On the observation of high frequency PKiKP and its coda in Australia. <i>Physics of the Earth and Planetary Interiors</i> , 2004 , 146, 497-511	2.3	47
200	Seismological Insights into Heterogeneity Patterns in the Mantle. <i>Geophysical Monograph Series</i> , 2004 , 43-57	1.1	
199	Lithospheric Structure in the Australian Region - A Synthesis of Surface Wave and Body Wave Studies. <i>Exploration Geophysics</i> , 2004 , 35, 242-250	1	10
198	Seismic structure in the mantle beneath Australia 2003,		21
197	Signal Parameter Estimation for Sparse Arrays. <i>Bulletin of the Seismological Society of America</i> , 2003 , 93, 1765-1772	2.3	9
196	Seismic structure of the Yilgarn Craton, Western Australia. <i>Australian Journal of Earth Sciences</i> , 2003 , 50, 427-438	1.4	41
195	Lithospheric structure of the Pilbara Craton, Capricorn Orogen and northern Yilgarn Craton, Western Australia, from teleseismic receiver functions. <i>Australian Journal of Earth Sciences</i> , 2003 , 50, 439-445	1.4	37
194	Modelling of seismic waves in heterogeneous media using a wavelet-based method: application to fault and subduction zones. <i>Geophysical Journal International</i> , 2003 , 154, 483-498	2.6	22
193	Contrasts in regional seismic wave propagation to station WMQ in central Asia. <i>Geophysical Journal International</i> , 2003 , 155, 44-56	2.6	8
192	Variations in crustal structure across the transition from West to East Antarctica, Southern Victoria Land. <i>Geophysical Journal International</i> , 2003 , 155, 870-880	2.6	69
191	Improved inversion for seismic structure using transformed, S-wavevector receiver functions: Removing the effect of the free surface. <i>Geophysical Research Letters</i> , 2003 , 30,	4.9	42
190	Joint bulk-sound and shear tomography for Western Pacific subduction zones. <i>Earth and Planetary Science Letters</i> , 2003 , 210, 527-543	5.3	117
189	Surface-wave studies of the Australian region 2003,		6
188	Regional Phases I - Propagation in the Crust and Uppermost Mantle 2002 , 42-77		
187	Regional Phases II - The Influence of Structure 2002 , 78-107		

(2002-2002)

186	Propagation in the Upper Mantle 2002 , 108-125		
185	Analysis of Regional and Far-Regional Seismograms 2002 , 163-186		
184	Body Waves in the Mantle 2002 , 223-257		
183	Surface Waves and Modal Analysis 2002 , 280-318		
182	Receiver Based Studies 2002 , 319-352		
181	Imaging the Earth 2002, 426-438		
180	3-D Global Structure 2002 , 439-460		
179	Paths and Travel times 2002 , 488-501		
178	Near Events 2002 , 3-27		
177	Propagation Effects at Near Distances 2002 , 28-41		
176	Upper Mantle Structure 2002 , 126-162		
175	The Nature of the Global Wavefield 2002 , 189-222		
174	Analysis of Seismic Records 2002 , 353-398		
173	The Influence of Heterogeneity 2002 , 401-425		
172	Body Waves and the Earth's Core 2002 , 258-279		
171	Mapping the Lithosphere and Upper Mantle 2002 , 461-487		1
170	On a Wavelet-Based Method for the Numerical Simulation of Wave Propagation. <i>Journal of Computational Physics</i> , 2002 , 183, 577-622	4.1	29
169	The Influence of 3-D Structure on the Propagation of Seismic Waves Away from Earthquakes. <i>Pure and Applied Geophysics</i> , 2002 , 159, 2113-2131	2.2	4

168	Non-linear waveform inversion for surface waves with a neighbourhood algorithm-application to multimode dispersion measurements. <i>Geophysical Journal International</i> , 2002 , 149, 118-133	2.6	78
167	Determination of the influence zone for surface wave paths. <i>Geophysical Journal International</i> , 2002 , 149, 440-453	2.6	128
166	Frequency dependence of seismic wave attenuation in the upper mantle beneath the Australian region. <i>Geophysical Journal International</i> , 2002 , 150, 45-57	2.6	23
165	A reappraisal of regional surface wave tomography. <i>Geophysical Journal International</i> , 2002 , 150, 37-44	2.6	52
164	A wavelet-based method for simulation of two-dimensional elastic wave propagation. <i>Geophysical Journal International</i> , 2002 , 150, 610-638	2.6	18
163	The Influence of 3-D Structure on the Propagation of Seismic Waves Away from Earthquakes 2002 , 211	3-2131	19
162	The Seismic Wavefield 2002 ,		56
161	Variations in Regional Phase Propagation in the Area around Japan. <i>Bulletin of the Seismological Society of America</i> , 2001 , 91, 667-682	2.3	31
160	Regional phases in continental and oceanic environments. <i>Geophysical Journal International</i> , 2001 , 146, 562-568	2.6	47
159	Phase identification and attribute analysis of broadband seismograms at far-regional distances 2001 , 5, 217-231		30
158	Seismic Event Location: Nonlinear Inversion Using a Neighbourhood Algorithm 2001 , 158, 241-257		66
157	Representations of Seismicity. <i>Geochemistry, Geophysics, Geosystems</i> , 2001 , 2, n/a-n/a	3.6	2
156	Earthquakes and Earth Structure 2001 , 21-36		
155	Seismic Sources 2001 , 66-77		
154	Seismic Phases 2001 , 78-104		
153	Building a Seismogram 2001 , 105-126		
152	Stress and Strain 2001 , 129-135		
151	Seismic Waves I - Plane Waves 2001 , 136-151		

150	Seismic Waves II - Wavefronts and Rays 2001 , 152-167		
149	Rays in Stratification 2001 , 168-188		
148	Seismic Sources 2001 , 189-207		
147	Waves in Stratification 2001 , 208-239		1
146	Reflection and Transmission 2001 , 240-259		
145	Building the Response of a Model 2001 , 260-293		
144	Constructing the Wavefield 2001 , 294-312		
143	Body Waves and Surface Waves 2001 , 313-351		
142	Appendix: Table of Notation 2001 , 352-356		
141	Seismic Waves 2001 , 37-65		
141	Seismic Waves 2001, 37-65 The Seismic Wavefield 2001,		73
		2.3	73
140	The Seismic Wavefield 2001 , Source Depth and Mechanism Inversion at Teleseismic Distances Using a Neighborhood Algorithm.	2.3	
140	The Seismic Wavefield 2001 , Source Depth and Mechanism Inversion at Teleseismic Distances Using a Neighborhood Algorithm. Bulletin of the Seismological Society of America, 2000 , 90, 1369-1383 Two-dimensional inversion of refraction traveltimes by progressive model development.		18
140 139 138	The Seismic Wavefield 2001, Source Depth and Mechanism Inversion at Teleseismic Distances Using a Neighborhood Algorithm. Bulletin of the Seismological Society of America, 2000, 90, 1369-1383 Two-dimensional inversion of refraction traveltimes by progressive model development. Geophysical Journal International, 2000, 140, 543-558 RESEARCH NOTE Stacking three-component seismograms. Geophysical Journal International, 2000,	2.6	18
140 139 138	The Seismic Wavefield 2001, Source Depth and Mechanism Inversion at Teleseismic Distances Using a Neighborhood Algorithm. Bulletin of the Seismological Society of America, 2000, 90, 1369-1383 Two-dimensional inversion of refraction traveltimes by progressive model development. Geophysical Journal International, 2000, 140, 543-558 RESEARCH NOTE Stacking three-component seismograms. Geophysical Journal International, 2000, 141, 263-269 Three-dimensional seismic structure beneath the Australasian region from refracted wave	2.6	18 11 16
140 139 138 137 136	The Seismic Wavefield 2001, Source Depth and Mechanism Inversion at Teleseismic Distances Using a Neighborhood Algorithm. Bulletin of the Seismological Society of America, 2000, 90, 1369-1383 Two-dimensional inversion of refraction traveltimes by progressive model development. Geophysical Journal International, 2000, 140, 543-558 RESEARCH NOTE Stacking three-component seismograms. Geophysical Journal International, 2000, 141, 263-269 Three-dimensional seismic structure beneath the Australasian region from refracted wave observations. Geophysical Journal International, 2000, 142, 651-668 Improving global shear wave traveltime tomography usingthree-dimensional ray tracing and	2.6	18 11 16 62

132	Stress and faulting in southeast Australia as derived from the strongest earthquakes in the region. <i>Journal of Asian Earth Sciences</i> , 2000 , 18, 17-23	2.8	3
131	Anisotropy in the Australasian upper mantle from Love and Rayleigh waveform inversion. <i>Earth and Planetary Science Letters</i> , 2000 , 184, 339-351	5.3	133
130	The Australian continental upper mantle: Structure and deformation inferred from surface waves. <i>Journal of Geophysical Research</i> , 2000 , 105, 25423-25450		153
129	The crustal thickness of Australia. <i>Journal of Geophysical Research</i> , 2000 , 105, 13697-13713		110
128	Seismic Source characterization using a neighbourhood algorithm. <i>Geophysical Research Letters</i> , 2000 , 27, 3401-3404	4.9	42
127	Guidelines for building a detailed elastic depth model. <i>Geophysics</i> , 2000 , 65, 35-45	3.1	
126	Seismic wavefield calculation for laterally heterogeneous earth models-II. The influence of upper mantle heterogeneity. <i>Geophysical Journal International</i> , 1999 , 139, 623-644	2.6	12
125	Seismic tomography with P and S data reveals lateral variations in the rigidity of deep slabs. <i>Earth and Planetary Science Letters</i> , 1999 , 173, 91-100	5.3	91
124	Multi-component autoregressive techniques for the analysis of seismograms. <i>Physics of the Earth and Planetary Interiors</i> , 1999 , 113, 247-263	2.3	152
123	A low seismic wavespeed anomaly beneath northwestern India: a seismic signature of the Deccan plume?. <i>Earth and Planetary Science Letters</i> , 1999 , 165, 145-155	5.3	131
122	On the density distribution within the Earth. <i>Geophysical Journal International</i> , 1998 , 132, 374-382	2.6	67
121	Anomalous surface waves associated with deep earthquakes, generated at an ocean ridge. <i>Geophysical Journal International</i> , 1998 , 134, 663-676	2.6	6
120	Inversion for multiple parameter classes. <i>Geophysical Journal International</i> , 1998 , 135, 304-306	2.6	11
119	Seismic wavefield calculation for laterally heterogeneous whole earth models using the pseudospectral method. <i>Geophysical Journal International</i> , 1998 , 135, 845-860	2.6	87
118	On the nature of regional seismic phases-III. The influence of crustal heterogeneity on the wavefield for subduction earthquakes: the 1985 Michoacan and 1995 Copala, Guerrero, Mexico earthquakes. <i>Geophysical Journal International</i> , 1998 , 135, 1060-1084	2.6	64
117	Guided waves in three-dimensional structures. <i>Geophysical Journal International</i> , 1998 , 133, 159-174	2.6	41
116	Extending shear-wave tomography for the lower mantle using S and SKS arrival-time data. <i>Earth, Planets and Space</i> , 1998 , 50, 999-1012	2.9	36
115	Joint seismic tomography for bulk sound and shear wave speed in the Earth's mantle. <i>Journal of Geophysical Research</i> , 1998 , 103, 12469-12493		199

114	Multichannel processing for airborne gamma-ray spectrometry. <i>Geophysics</i> , 1998 , 63, 1971-1985	3.1	12
113	Parallel 3-D pseudospectral simulation of seismic wave propagation. <i>Geophysics</i> , 1998 , 63, 279-288	3.1	63
112	Upper mantle structure beneath Australia from portable array deployments. <i>Geodynamic Series</i> , 1998 , 39-57		53
111	Model-Based Velocity Analysis. <i>Exploration Geophysics</i> , 1997 , 28, 349-354	1	2
110	On the nature of regional seismic phases-II. On the influence of structural barriers. <i>Geophysical Journal International</i> , 1997 , 129, 221-234	2.6	39
109	Genetic algorithm inversion for receiver functions with application to crust and uppermost mantle structure beneath eastern Australia. <i>Geophysical Research Letters</i> , 1996 , 23, 1829-1832	4.9	141
108	Using a Synthetic Continental Array to Study the Earth's Interior <i>Journal of Physics of the Earth</i> , 1996 , 44, 669-674		8
107	A 2.5-D Time-Domain Elastodynamic Equation For Plane-Wave Incidence. <i>Geophysical Journal International</i> , 1996 , 125, 5-9	2.6	23
106	Ellipticity corrections for seismic phases. <i>Geophysical Journal International</i> , 1996 , 127, 40-48	2.6	86
105	A 2.5-D time-domain elastodynamic equation for a general anisotropic medium. <i>Geophysical Journal International</i> , 1996 , 127, F1-F4	2.6	4
104	Effect of 2-D topography on the 3-D seismic wavefield using a 2.5-D discrete wavenumber-boundary integral equation method. <i>Geophysical Journal International</i> , 1996 , 124, 741-75.	5 ^{2.6}	30
103	How to reconcile body-wave and normal-mode reference earth models. <i>Geophysical Journal International</i> , 1996 , 125, 229-248	2.6	350
102	How does the shear-wave structure of the seabed affect the seismic wavefield?. <i>Geophysical Journal International</i> , 1996 , 124, 341-348	2.6	3
101	An efficient approach to the seismogram synthesis for a basin structure using propagation invariants. <i>Bulletin of the Seismological Society of America</i> , 1996 , 86, 379-388	2.3	7
100	Automatic seismic event recognition and later phase identification for broadband seismograms. Bulletin of the Seismological Society of America, 1996 , 86, 1896-1909	2.3	44
99	Constraints on seismic velocities in the Earth from traveltimes. <i>Geophysical Journal International</i> , 1995 , 122, 108-124	2.6	2284
98	Towards the identification of later seismic phases. <i>Geophysical Journal International</i> , 1995 , 123, 948-958	8 2.6	27
97	Approximations for surface-wave propagation in laterally varying media. <i>Geophysical Journal International</i> , 1995 , 122, 470-478	2.6	62

96	Detailed Elastic Modelling to Characterise Noise Contributions to Seismic Data from the Gippsland Basin. <i>Exploration Geophysics</i> , 1995 , 26, 37-44	1	3
95	Optimum Channel Combinations for Multichannel Airborne Gamma-Ray Spectrometry. <i>Exploration Geophysics</i> , 1995 , 26, 292-301	1	3
94	Reply to comment on E rrors in hypocenter location: Picking, model, and magnitude dependence by C. Lomnitz. <i>Bulletin of the Seismological Society of America</i> , 1995 , 85, 1529-1529	2.3	1
93	The underdetermined Earth. <i>Journal of Earth System Science</i> , 1995 , 104, 539-553	1.8	
92	Representations of the seismic wavefield. <i>Geophysical Journal International</i> , 1994 , 118, 344-357	2.6	3
91	Hypocentre location: genetic algorithms incorporating problem-specific information. <i>Geophysical Journal International</i> , 1994 , 118, 693-706	2.6	69
90	Project Skippy explores lithosphere and mantle beneath Australia. <i>Eos</i> , 1994 , 75, 177	1.5	95
89	Shear wave splitting in refracted waves returned from the upper mantle transition zone beneath northern Australia. <i>Journal of Geophysical Research</i> , 1994 , 99, 15783		53
88	The upper-mantle S and P velocity structure beneath northern Australia from broad-band observations. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 86, 85-98	2.3	45
87	Broadband observations of upper-mantle seismic phases in northern Australia and the attenuation structure in the upper mantle. <i>Physics of the Earth and Planetary Interiors</i> , 1994 , 84, 207-226	2.3	45
86	Errors in hypocenter location: Picking, model, and magnitude dependence. <i>Bulletin of the Seismological Society of America</i> , 1994 , 84, 1978-1990	2.3	84
85	The integral operator representation of propagation invariants for elastic waves in irregularly layered media. <i>Wave Motion</i> , 1993 , 17, 299-317	1.8	10
84	Variations In Upper Mantle Structure Under Northern Australia. <i>Geophysical Journal International</i> , 1993 , 114, 304-310	2.6	38
83	A two-layer stacking procedure to enhance converted waves. <i>Geophysics</i> , 1993 , 58, 997-1001	3.1	1
82	Earthquake location Igenetic algorithms for teleseisms. <i>Physics of the Earth and Planetary Interiors</i> , 1992 , 75, 103-110	2.3	56
81	Multiple scattering of surface waves from discrete obstacles. <i>Geophysical Journal International</i> , 1992 , 108, 52-70	2.6	35
80	Locating oceanic earthquakes-the influence of regional models and location criteria. <i>Geophysical Journal International</i> , 1992 , 108, 848-854	2.6	46
79	The Influence of the Shear-Wave Structure of the Sea Bed on the Seismic Wavefield. <i>Exploration Geophysics</i> , 1992 , 23, 173-176	1	1

78	The Removal of Free Surface Interactions From Three-Component Seismograms. <i>Geophysical Journal International</i> , 1991 , 104, 153-154	2.6	128
77	2-D reflectivity method and synthetic seismograms for irregularly layered structures-II. Invariant embedding approach. <i>Geophysical Journal International</i> , 1991 , 105, 119-130	2.6	55
76	Traveltimes for global earthquake location and phase identification. <i>Geophysical Journal International</i> , 1991 , 105, 429-465	2.6	2573
75	AN ALTERNATIVE STRATEGY FOR NON-LINEAR INVERSION OF SEISMIC WAVEFORMS1. <i>Geophysical Prospecting</i> , 1991 , 39, 723-736	1.9	33
74	Seismic velocity gradients in the upper mantle. <i>Geophysical Research Letters</i> , 1991 , 18, 1115-1118	4.9	40
73	Modelling Seismic Reflections In Central Australia By The 3D Isochronal Technique. <i>Exploration Geophysics</i> , 1991 , 22, 525-532	1	2
72	Guided Wave Attenuation in Laterally Varying Media. <i>Geophysical Journal International</i> , 1990 , 100, 415-4	1226	7
71	Boundary value ray tracing in a heterogeneous medium: a simple and versatile algorithm. <i>Geophysical Journal International</i> , 1990 , 101, 157-168	2.6	54
7°	Propagation invariants, reflection and transmission in anisotropic, laterally heterogeneous media. <i>Geophysical Journal International</i> , 1990 , 103, 95-101	2.6	27
69	The interaction of the S-wavefield with upper mantle heterogeneity. <i>Geophysical Journal International</i> , 1990 , 101, 751-762	2.6	31
68	The effect of 3-D structure on Lg propagation patterns. <i>Geophysical Journal International</i> , 1990 , 101, 355-364	2.6	55
67	An investigation of the upper mantle beneath NW Australia using a hybrid seismograph array. <i>Geophysical Journal International</i> , 1990 , 101, 411-424	2.6	62
66	3D isochronal modelling of reflections from the deep crust: application to reflection profiling in central Australia. <i>Tectonophysics</i> , 1990 , 173, 119-128	3.1	4
65	Seismic reflection profiling in the Proterozoic Arunta Block, central Australia: processing for testing models of tectonic evolution. <i>Tectonophysics</i> , 1990 , 173, 257-268	3.1	39
64	The velocity structure and heterogeneity of the upper mantle. <i>Physics of the Earth and Planetary Interiors</i> , 1990 , 59, 134-144	2.3	48
63	Guided-wave tracking in 3-D: A tool for interpreting complex regional seismograms. <i>Bulletin of the Seismological Society of America</i> , 1990 , 80, 633-642	2.3	27
62	Three-component analysis of regional seismograms. <i>Bulletin of the Seismological Society of America</i> , 1990 , 80, 2032-2052	2.3	43
61	Synthetic reflection seismograms in three dimensions by a locked-mode approximation. <i>Geophysics</i> , 1989 , 54, 350-358	3.1	24

60	Reflection seismograms in a 3-D elastic model: an isochronal approach. <i>Geophysical Journal International</i> , 1989 , 99, 63-80	2.6	7
59	On the nature of regional seismic phases-I. Phase representations for Pn, Pg, Sn, Lg. <i>Geophysical Journal International</i> , 1989 , 98, 447-456	2.6	38
58	Geophysical evidence for 'thick-skinned' crustal deformation in central Australia. <i>Nature</i> , 1989 , 337, 32	5-33.04	124
57	Stacking and velocity estimation for 3-D surveys. Exploration Geophysics, 1989, 20, 225	1	
56	Subspace methods for large inverse problems with multiple parameter classes. <i>Geophysical Journal International</i> , 1988 , 94, 237-247	2.6	180
55	Seismic reflection and refraction profiling across the Arunta Block and the Ngalia and Amadeus Basins. <i>Australian Journal of Earth Sciences</i> , 1988 , 35, 275-294	1.4	30
54	Seismic Velocity Field Estimation Strategies for Large-scale Nonlinear Inverse Problems. <i>Exploration Geophysics</i> , 1988 , 19, 297-298	1	2
53	Alternative Stacking Techniques for Deep Crustal Data. <i>Exploration Geophysics</i> , 1988 , 19, 78-82	1	1
52	Observational and theoretical constraints on crustal and upper mantle heterogeneity. <i>Physics of the Earth and Planetary Interiors</i> , 1987 , 47, 319-332	2.3	45
51	Some Preliminary Results from Regional Seismic Profiling in Central Australia. <i>Exploration Geophysics</i> , 1987 , 18, 227-231	1	
50	Preliminary deep reflection studies in the Arunta Block, Central Australia. <i>Geophysical Journal International</i> , 1987 , 89, 437-442	2.6	10
49	On reducing the reflectivity integral to a finite range. <i>Geophysical Journal International</i> , 1987 , 90, 741-7	'4<u>6</u>. 6	
48	On the use of truncated modal expansions in laterally varying media. <i>Geophysical Journal International</i> , 1987 , 91, 837-851	2.6	46
47	The Central Australian seismic experiment, 1985: preliminary results. <i>Geophysical Journal International</i> , 1987 , 89, 431-436	2.6	8
46	Wavenumber and wavetype coupling in laterally heterogeneous media. <i>Geophysical Journal International</i> , 1986 , 87, 313-331	2.6	57
45	A novel method of hypocentre location. <i>Geophysical Journal International</i> , 1986 , 87, 679-697	2.6	94
44	Mapping of crustal heterogeneity in the North Sea basin via the propagation of Lg-waves. <i>Geophysical Journal International</i> , 1985 , 83, 299-306	2.6	56
43	Reflection operator methods for elastic waves I-irregular interfaces and regions. <i>Wave Motion</i> , 1984 , 6, 407-418	1.8	22

42	Reflection operator methods for elastic waves II ©composite regions and source problems. <i>Wave Motion</i> , 1984 , 6, 419-429	1.8	26
41	Guided wave propagation in laterally varying media I. Theoretical development. <i>Geophysical Journal International</i> , 1984 , 79, 235-255	2.6	113
40	Guided wave propagation in laterally varying media II. Lg-waves in north-western Europe. <i>Geophysical Journal International</i> , 1984 , 79, 257-267	2.6	56
39	AN OPERATOR APPROACH TO FORWARD MODELING, DATA PROCESSING AND MIGRATION*. <i>Geophysical Prospecting</i> , 1984 , 32, 1074-1090	1.9	25
38	GUIDED LOW-FREQUENCY NOISE FROM AIRGUN SOURCES*. Geophysical Prospecting, 1984, 32, 690-70.	51.9	3
37	Rapid calculation of surface wave dispersion. <i>Geophysical Journal International</i> , 1983 , 72, 619-631	2.6	26
36	Seismic waves in a stratified half-space IV: PSV wave decoupling and surface wave dispersion. <i>Geophysical Journal International</i> , 1983 , 72, 633-645	2.6	28
35	The Nature of Seismic Reflections from Coal Seams. First Break, 1983, 1,	0.5	8
34	Slowness techniques in seismic interpretation. <i>Journal of Geophysical Research</i> , 1981 , 86, 11575		5
33	On coupled seismic waves. <i>Geophysical Journal International</i> , 1981 , 64, 91-114	2.6	3
32	Seismic waves in a stratified half space?III. Piecewise smooth models. <i>Geophysical Journal International</i> , 1981 , 66, 633-675	2.6	46
31	Seismic waves in a stratified half space II. Theoretical seismograms. <i>Geophysical Journal International</i> , 1980 , 61, 1-10	2.6	72
30	The crustal structure of the Reykjanes Ridge at 59🛮 30'N. <i>Geophysical Journal International</i> , 1980 , 61, 14	1 ⊴16 6	78
29	The influence of upper mantle discontinuities on the toroidal free oscillations of the Earth. <i>Geophysical Journal International</i> , 1979 , 56, 283-308	2.6	28
28	Seismic waves in a stratified half space. <i>Geophysical Journal International</i> , 1979 , 57, 557-583	2.6	414
27	THEORETICAL REFLECTION SEISMOGRAMS FOR ELASTIC MEDIA*. <i>Geophysical Prospecting</i> , 1979 , 27, 301-321	1.9	45
26	THE SUPPRESSION OF SURFACE MULTIPLES ON SEISMIC RECORDS*. <i>Geophysical Prospecting</i> , 1979 , 27, 584-600	1.9	34
25	Symmetries in the reflection and transmission of elastic waves. <i>Geophysical Journal International</i> , 1978 , 52, 215-229	2.6	55

24	On high-frequency spheroidal modes and the structure of the upper mantle. <i>Geophysical Journal International</i> , 1978 , 55, 333-350	2.6	33
23	Some aspects of non-linearity in inversion. <i>Geophysical Journal International</i> , 1978 , 55, 373-391	2.6	16
22	A comparison of the upper-mantle structure beneath Eurasia and the North Atlantic and Arctic Oceans. <i>Geophysical Journal International</i> , 1978 , 54, 575-585	2.6	46
21	Variations in crustal structure on the East Pacific Rise crest: A travel time inversion approach. <i>Earth and Planetary Science Letters</i> , 1977 , 34, 439-444	5.3	5
20	The inversion of reflected wave travel times. <i>Geophysical Journal International</i> , 1977 , 49, 739-746	2.6	6
19	Towards a more detailed seismic picture of the oceanic crust and mantle. <i>Marine Geophysical Researches</i> , 1977 , 3, 7-42	2.3	50
18	A comparison of travel time inversions for marine refraction profiles. <i>Journal of Geophysical Research</i> , 1976 , 81, 4061-4070		63
17	A Comparison of Travel-Time Inversions. <i>Geophysical Journal International</i> , 1976 , 44, 517-536	2.6	65
16	Structure of the East Pacific Rise from an Ocean Bottom Seismometer Survey. <i>Geophysical Journal International</i> , 1976 , 45, 305-320	2.6	134
15	An Implosive Precursor to the Colombia Earthquake 1970 July 31. <i>Geophysical Journal International</i> , 1976 , 44, 471-482	2.6	11
14	The influence of lateral variations on seismic refraction interpretation. <i>Pure and Applied Geophysics</i> , 1976 , 114, 647-652	2.2	4
13	The inversion of surface wave data. <i>Pure and Applied Geophysics</i> , 1976 , 114, 747-751	2.2	3
12	The Interaction of Seismic Waves with Horizontal Velocity ContrastsIII. The Effects of Horizontal Transition Zones. <i>Geophysical Journal International</i> , 1975 , 41, 29-36	2.6	
11	Comments on the Paper 'On Variational Principles and Matrix Methods in Elastodynamics' by B. L. N. Kennett. <i>Geophysical Journal International</i> , 1975 , 43, 721-725	2.6	1
10	A low velocity zone underlying a fast-spreading rise crest. <i>Nature</i> , 1975 , 256, 475-476	50.4	68
9	The Interaction of Seismic Waves with Horizontal Velocity ContrastsII. Diffraction Effects for SH Wave Pulses. <i>Geophysical Journal International</i> , 1974 , 37, 9-22	2.6	2
8	On Variational Principles and Matrix Methods in Elastodynamics. <i>Geophysical Journal International</i> , 1974 , 37, 391-405	2.6	15
7	Reflections, rays, and reverberations. Bulletin of the Seismological Society of America, 1974 , 64, 1685-10	69 6 .3	182

LIST OF PUBLICATIONS

6	International, 1973 , 33, 431-450	6	7
5	The Effects of Scattering on Seismic Wave Pulses. <i>Geophysical Journal International</i> , 1973 , 32, 389-408 2.0	6	
4	Upper Mantle Zone of Low Q. <i>Nature: Physical Science</i> , 1972 , 238, 87-90		6
3	Seismic Waves in Laterally Inhomogeneous Media. <i>Geophysical Journal International</i> , 1972 , 27, 301-325 2.0	6	67
2	Seismic Wave Scattering by Obstacles on Interfaces. <i>Geophysical Journal International</i> , 1972 , 28, 249-266 ₂ .0	6	27
1	The connection between elastodynamic representation theorems and propagator matrices. <i>Bulletin</i> of the Seismological Society of America, 1972 , 62, 973-983	3	4