Jaeyoung Choi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8237388/publications.pdf Version: 2024-02-01

LAEVOLING CHOL

#	Article	IF	CITATIONS
1	Genome sequence of the hot pepper provides insights into the evolution of pungency in Capsicum species. Nature Genetics, 2014, 46, 270-278.	21.4	867
2	Lifestyle transitions in plant pathogenic Colletotrichum fungi deciphered by genome and transcriptome analyses. Nature Genetics, 2012, 44, 1060-1065.	21.4	840
3	Kingdom-Wide Analysis of Fungal Small Secreted Proteins (SSPs) Reveals their Potential Role in Host Association. Frontiers in Plant Science, 2016, 7, 186.	3.6	165
4	FTFD: an informatics pipeline supporting phylogenomic analysis of fungal transcription factors. Bioinformatics, 2008, 24, 1024-1025.	4.1	162
5	Fungal Secretome Database: Integrated platform for annotation of fungal secretomes. BMC Genomics, 2010, 11, 105.	2.8	160
6	Systematic functional profiling of transcription factor networks in Cryptococcus neoformans. Nature Communications, 2015, 6, 6757.	12.8	155
7	Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics, 2012, 13, 525.	2.8	150
8	Insights on the Evolution of Mycoparasitism from the Genome of Clonostachys rosea. Genome Biology and Evolution, 2015, 7, 465-480.	2.5	150
9	Fungal cytochrome P450 database. BMC Genomics, 2008, 9, 402.	2.8	134
10	Genome-wide profiling of DNA methylation provides insights into epigenetic regulation of fungal development in a plant pathogenic fungus, Magnaporthe oryzae. Scientific Reports, 2015, 5, 8567.	3.3	115
11	Systematic functional analysis of kinases in the fungal pathogen Cryptococcus neoformans. Nature Communications, 2016, 7, 12766.	12.8	112
12	Secret lifestyles of Neurospora crassa. Scientific Reports, 2014, 4, 5135.	3.3	104
13	CFGP: a web-based, comparative fungal genomics platform. Nucleic Acids Research, 2007, 36, D562-D571.	14.5	76
14	Two nuclear effectors of the rice blast fungus modulate host immunity via transcriptional reprogramming. Nature Communications, 2020, 11, 5845.	12.8	75
15	Fungal plant cell wall-degrading enzyme database: a platform for comparative and evolutionary genomics in fungi and Oomycetes. BMC Genomics, 2013, 14, S7.	2.8	72
16	fPoxDB: fungal peroxidase database for comparative genomics. BMC Microbiology, 2014, 14, 117.	3.3	72
17	Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae. Scientific Reports, 2015, 5, 11831.	3.3	71
18	Cyber infrastructure for Fusarium: three integrated platforms supporting strain identification, phylogenetics, comparative genomics and knowledge sharing. Nucleic Acids Research, 2011, 39, D640-D646.	14.5	63

JAEYOUNG CHOI

#	Article	IF	CITATIONS
19	Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus. PLoS Pathogens, 2013, 9, e1003350.	4.7	61
20	CFGP 2.0: a versatile web-based platform for supporting comparative and evolutionary genomics of fungi and Oomycetes. Nucleic Acids Research, 2013, 41, D714-D719.	14.5	51
21	Transcriptome Analysis of Early Responsive Genes in Rice during Magnaporthe oryzae Infection. Plant Pathology Journal, 2014, 30, 343-354.	1.7	40
22	Genome-scale analysis of ABC transporter genes and characterization of the ABCC type transporter genes in Magnaporthe oryzae. Genomics, 2013, 101, 354-361.	2.9	38
23	funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi. BMC Genomics, 2014, 15, S14.	2.8	25
24	Draft Genome Sequence of Lichen-Forming Fungus <i>Cladonia metacorallifera</i> Strain KoLRI002260. Genome Announcements, 2014, 2, .	0.8	22
25	Genome-wide functional analysis of phosphatases in the pathogenic fungus Cryptococcus neoformans. Nature Communications, 2020, 11, 4212.	12.8	22
26	Draft Genome Sequence of <i>Umbilicaria muehlenbergii</i> KoLRILF000956, a Lichen-Forming Fungus Amenable to Genetic Manipulation. Genome Announcements, 2014, 2, .	0.8	20
27	Global DNA Methylation in the Chestnut Blight Fungus Cryphonectria parasitica and Genome-Wide Changes in DNA Methylation Accompanied with Sectorization. Frontiers in Plant Science, 2018, 9, 103.	3.6	20
28	Draft Genome Sequence of Cladonia macilenta KoLRI003786, a Lichen-Forming Fungus Producing Biruloquinone. Genome Announcements, 2013, 1, .	0.8	19
29	SNUGB: a versatile genome browser supporting comparative and functional fungal genomics. BMC Genomics, 2008, 9, 586.	2.8	17
30	IMGD: an integrated platform supporting comparative genomics and phylogenetics of insect mitochondrial genomes. BMC Genomics, 2009, 10, 148.	2.8	17
31	Fucoxanthin biosynthesis has a positive correlation with the specific growth rate in the culture of microalga Phaeodactylum tricornutum. Journal of Applied Phycology, 2021, 33, 1473-1485.	2.8	17
32	<i>Phytophthora</i> Database 2.0: Update and Future Direction. Phytopathology, 2013, 103, 1204-1208.	2.2	16
33	Draft Genome Sequence of Lichen-Forming Fungus Caloplaca flavorubescens Strain KoLRI002931. Genome Announcements, 2013, 1, .	0.8	16
34	Experimental Evolution Reveals Genome-Wide Spectrum and Dynamics of Mutations in the Rice Blast Fungus, Magnaporthe oryzae. PLoS ONE, 2013, 8, e65416.	2.5	16
35	Regulation of Cellular Diacylglycerol through Lipid Phosphate Phosphatases Is Required for Pathogenesis of the Rice Blast Fungus, Magnaporthe oryzae. PLoS ONE, 2014, 9, e100726.	2.5	14
36	Fusion of Spectroscopy and Cobalt Electrochemistry Data for Estimating Phosphate Concentration in Hydroponic Solution. Sensors, 2019, 19, 2596.	3.8	14

JAEYOUNG CHOI

#	Article	IF	CITATIONS
37	dbHiMo: a web-based epigenomics platform for histone-modifying enzymes. Database: the Journal of Biological Databases and Curation, 2015, 2015, bav052-bav052.	3.0	13
38	Potential roles of laccases on virulence of Heterobasidion annosum s.s Microbial Pathogenesis, 2015, 81, 16-21.	2.9	12
39	Alternative splicing diversifies the transcriptome and proteome of the rice blast fungus during host infection. RNA Biology, 2022, 19, 373-386.	3.1	12
40	Antiâ€staphylococcal activity of a cyclic lipopeptide, C ₁₅ â€bacillomycin D, produced by <i>Bacillus velezensis</i> NST6. Journal of Applied Microbiology, 2021, 131, 93-104.	3.1	11
41	Complete genome sequence of Bacillus velezensis NST6 and comparison with the species belonging to operational group B. amyloliquefaciens. Genomics, 2021, 113, 380-386.	2.9	11
42	Diversity, population structure, and linkage disequilibrium among cowpea accessions. Plant Genome, 2021, 14, e20113.	2.8	11
43	Draft Genome Sequence of <i>Endocarpon pusillum</i> Strain KoLRILF000583. Genome Announcements, 2014, 2, .	0.8	10
44	dbCRY: a Web-based comparative and evolutionary genomics platform for blue-light receptors. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau037.	3.0	10
45	Comparative analysis of genome sequences of the conifer tree pathogen, Heterobasidion annosum s.s Genomics Data, 2017, 14, 106-113.	1.3	10
46	Eukaryotic DNAJ/K Database: A Comprehensive Phylogenomic Analysis Platform for the DNAJ/K Family. Genomics and Informatics, 2013, 11, 52.	0.8	10
47	Comparative Genomics Platform and Phylogenetic Analysis of Fungal Laccases and Multi-Copper Oxidases. Mycobiology, 2020, 48, 373-382.	1.7	9
48	Genetic Diversity and Association Analysis for Carotenoid Content among Sprouts of Cowpea (Vigna) Tj ETQq0	0 0 _{4.9} BT /(Overlock 10 Ti
49	A comparative genomic analysis of lichen-forming fungi reveals new insights into fungal lifestyles. Scientific Reports, 2022, 12, .	3.3	6
50	Genome Analysis of Streptomyces nojiriensis JCM 3382 and Distribution of Gene Clusters for Three Antibiotics and an Azasugar across the Genus Streptomyces. Microorganisms, 2021, 9, 1802.	3.6	5
51	Analysis of in planta Expressed Orphan Genes in the Rice Blast Fungus Magnaporthe oryzae. Plant Pathology Journal, 2014, 30, 367-374.	1.7	4
52	Genomic Insights into the Rice Blast Fungus through Estimation of Gene Emergence Time in Phylogenetic Context. Mycobiology, 2018, 46, 361-369.	1.7	3
53	Genomics and Informatics, Conjoined Tools Vital for Understanding and Protecting Plant Health. Phytopathology, 2022, 112, 981-995.	2.2	2
54	In Silico Sequence Analysis Reveals New Characteristics of Fungal NADPH Oxidase Genes. Mycobiology, 2014, 42, 241-248.	1.7	1