
Seungjin Lee

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8237171/publications.pdf Version: 2024-02-01

SELINCUM LEE

#	Article	IF	CITATIONS
1	Boosting the efficiency of quasi-2D perovskites light-emitting diodes by using encapsulation growth method. Nano Energy, 2021, 80, 105511.	16.0	54
2	Molecular aggregation method for perovskite–fullerene bulk heterostructure solar cells. Journal of Materials Chemistry A, 2020, 8, 1326-1334.	10.3	15
3	Water-stable polymer hole transport layer in organic and perovskite light-emitting diodes. Journal of Power Sources, 2020, 478, 228810.	7.8	6
4	Sky-Blue-Emissive Perovskite Light-Emitting Diodes: Crystal Growth and Interfacial Control Using Conjugated Polyelectrolytes as a Hole-Transporting Layer. ACS Nano, 2020, 14, 13246-13255.	14.6	38
5	A-Site Cation Engineering for Efficient Blue-Emissive Perovskite Light-Emitting Diodes. Energies, 2020, 13, 6689.	3.1	5
6	Solution processable small molecules as efficient electron transport layers in organic optoelectronic devices. Journal of Materials Chemistry A, 2020, 8, 13501-13508.	10.3	19
7	Uniform and Largeâ€Area Cesiumâ€Based Quasiâ€⊋D Perovskite Lightâ€Emitting Diodes Using Hotâ€Casting Method. Advanced Materials Interfaces, 2020, 7, 1902158.	3.7	25
8	Highly Efficient Flexible Perovskite Light-Emitting Diodes Using the Modified PEDOT:PSS Hole Transport Layer and Polymer–Silver Nanowire Composite Electrode. ACS Applied Materials & Interfaces, 2019, 11, 39274-39282.	8.0	24
9	Versatile Defect Passivation Methods for Metal Halide Perovskite Materials and their Application to Lightâ€Emitting Devices. Advanced Materials, 2019, 31, e1805244.	21.0	92
10	Conjugated Polyelectrolytes as Multifunctional Passivating and Holeâ€Transporting Layers for Efficient Perovskite Lightâ€Emitting Diodes. Advanced Materials, 2019, 31, e1900067.	21.0	44
11	Flexibility of Semitransparent Perovskite Light-Emitting Diodes Investigated by Tensile Properties of the Perovskite Layer. Nano Letters, 2019, 19, 971-976.	9.1	37
12	Conjugated Polyelectrolytes Bearing Various Ion Densities: Spontaneous Dipole Generation, Polingâ€Induced Dipole Alignment, and Interfacial Energy Barrier Control for Optoelectronic Device Applications. Advanced Materials, 2018, 30, e1706034.	21.0	12
13	Growth of Nanosized Single Crystals for Efficient Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 3417-3423.	14.6	109
14	Control of Interface Defects for Efficient and Stable Quasiâ€2D Perovskite Lightâ€Emitting Diodes Using Nickel Oxide Hole Injection Layer. Advanced Science, 2018, 5, 1801350.	11.2	92
15	Conjugated Polyelectrolytes as Efficient Hole Transport Layers in Perovskite Light-Emitting Diodes. ACS Nano, 2018, 12, 5826-5833.	14.6	56
16	Amine-Based Passivating Materials for Enhanced Optical Properties and Performance of Organic–Inorganic Perovskites in Light-Emitting Diodes. Journal of Physical Chemistry Letters, 2017, 8, 1784-1792.	4.6	220
17	Improved performance of perovskite light-emitting diodes using a PEDOT:PSS and MoO ₃ composite layer. Journal of Materials Chemistry C, 2016, 4, 8161-8165.	5.5	75
18	Amineâ€Based Interfacial Molecules for Inverted Polymerâ€Based Optoelectronic Devices. Advanced Materials, 2015, 27, 3553-3559.	21.0	77

SEUNGJIN LEE

#	Article	IF	CITATIONS
19	Highâ€Performance Planar Perovskite Optoelectronic Devices: A Morphological and Interfacial Control by Polar Solvent Treatment. Advanced Materials, 2015, 27, 3492-3500.	21.0	205
20	Amineâ€Based Polar Solvent Treatment for Highly Efficient Inverted Polymer Solar Cells. Advanced Materials, 2014, 26, 494-500.	21.0	159
21	Combination effect of polar solvent treatment on ZnO and polyfluorene-based polymer blends for highly efficient blue-based hybrid organic–inorganic polymer light-emitting diodes. Journal of Materials Chemistry C, 2014, 2, 8673-8677.	5.5	8