
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8237145/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence of the humidity on the mechanical properties of 3D printed continuous flax fibre reinforced poly(lactic acid) composites. Composites Part A: Applied Science and Manufacturing, 2022, 155, 106805.	3.8	22
2	Development of chimeric forms of the matrix metalloproteinase 2 collagen binding domain as artificial membrane binding proteins for targeting stem cells to cartilage lesions in osteoarthritic joints. Biomaterials, 2022, 285, 121547.	5.7	2
3	Measure of porosity in flax fibres reinforced polylactic acid biocomposites. Composites Part A: Applied Science and Manufacturing, 2021, 141, 106183.	3.8	27
4	Sonolithography: Inâ€Air Ultrasonic Particulate and Droplet Manipulation for Multiscale Surface Patterning. Advanced Materials Technologies, 2021, 6, 2000689.	3.0	11
5	Multiphase lattice metamaterials with enhanced mechanical performance. Smart Materials and Structures, 2021, 30, 025014.	1.8	35
6	Abnormal stiffness behaviour in artificial cactus-inspired reinforcement materials. Bioinspiration and Biomimetics, 2021, 16, 026004.	1.5	1
7	Diffusivelike Motions in a Solvent-Free Protein-Polymer Hybrid. Physical Review Letters, 2021, 126, 088102.	2.9	7
8	Cell augmentation strategies for cardiac stem cell therapies. Stem Cells Translational Medicine, 2021, 10, 855-866.	1.6	3
9	Measuring Nanoparticle Penetration Through Bio-Mimetic Gels. International Journal of Nanomedicine, 2021, Volume 16, 2585-2595.	3.3	5
10	An artificial membrane binding protein-polymer surfactant nanocomplex facilitates stem cell adhesion to the cartilage extracellular matrix. Biomaterials, 2021, 276, 120996.	5.7	7
11	Three-Dimensional Printable Enzymatically Active Plastics. ACS Applied Polymer Materials, 2021, 3, 6070-6077.	2.0	4
12	A Rationally Designed Supercharged Protein-Enzyme Chimera Self-Assembles <i>In Situ</i> to Yield Bifunctional Composite Textiles. ACS Applied Materials & Interfaces, 2021, 13, 60433-60445.	4.0	4
13	3D Bioprinting: The Emergence of Programmable Biodesign. Advanced Healthcare Materials, 2020, 9, e1900554.	3.9	25
14	Controlling Protein Nanocage Assembly with Hydrostatic Pressure. Journal of the American Chemical Society, 2020, 142, 20640-20650.	6.6	17
15	Fabrication of New Hybrid Scaffolds for in vivo Perivascular Application to Treat Limb Ischemia. Frontiers in Cardiovascular Medicine, 2020, 7, 598890.	1.1	9
16	Biopolymeric Coacervate Microvectors for the Delivery of Functional Proteins to Cells. Advanced Biology, 2020, 4, e2000101.	3.0	8
17	Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite Nanofibrous Substrates: The Role of Substrate Elasticity. Frontiers in Bioengineering and Biotechnology, 2020, 8, 197.	2.0	10
18	A Composite Hydrogel Scaffold Permits Selfâ€Organization and Matrix Deposition by Cocultured Human Glomerular Cells. Advanced Healthcare Materials, 2019, 8, e1900698.	3.9	17

#	Article	IF	CITATIONS
19	Designer artificial membrane binding proteins to direct stem cells to the myocardium. Chemical Science, 2019, 10, 7610-7618.	3.7	15
20	Sequential Electrostatic Assembly of a Polymer Surfactant Corona Increases Activity of the Phosphotriesterase arPTE. Bioconjugate Chemistry, 2019, 30, 2771-2776.	1.8	8
21	Artificial cell membrane binding thrombin constructs drive in situ fibrin hydrogel formation. Nature Communications, 2019, 10, 1887.	5.8	30
22	Insight into the Structure and Activity of Surfaceâ€Engineered Lipase Biofluids. ChemBioChem, 2019, 20, 1266-1272.	1.3	12
23	Gene-Mediated Chemical Communication in Synthetic Protocell Communities. ACS Synthetic Biology, 2018, 7, 339-346.	1.9	136
24	Engineered basement membranes: from <i>in vivo</i> considerations to cell-based assays. Integrative Biology (United Kingdom), 2018, 10, 680-695.	0.6	16
25	Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. Advanced Materials, 2018, 30, e1802649.	11.1	140
26	Hydrogelâ€Immobilized Supercharged Proteins. Advanced Biology, 2018, 2, 1700240.	3.0	14
27	Biodegradable, Drugâ€Loaded Nanovectors via Direct Hydration as a New Platform for Cancer Therapeutics. Small, 2018, 14, e1703774.	5.2	19
28	Insight into the molecular mechanism behind PEG-mediated stabilization of biofluid lipases. Scientific Reports, 2018, 8, 12293.	1.6	15
29	Multi-enzyme cascade reactions using protein–polymer surfactant self-standing films. Chemical Communications, 2017, 53, 2094-2097.	2.2	30
30	Functionalized Triblock Copolymer Vectors for the Treatment of Acute Lymphoblastic Leukemia. Molecular Pharmaceutics, 2017, 14, 722-732.	2.3	9
31	Regulation of Scaffold Cell Adhesion Using Artificial Membrane Binding Proteins. Macromolecular Bioscience, 2017, 17, 1600523.	2.1	12
32	Bioprinting: uncovering the utility layer-by-layer. Journal of 3D Printing in Medicine, 2017, 1, 165-179.	1.0	13
33	High-Resolution Patterned Cellular Constructs by Droplet-Based 3D Printing. Scientific Reports, 2017, 7, 7004.	1.6	154
34	Mechanics and band gaps in hierarchical auxetic rectangular perforated composite metamaterials. Composite Structures, 2017, 160, 1042-1050.	3.1	77
35	Effect of Bioconjugation on the Reduction Potential of Heme Proteins. Biomacromolecules, 2016, 17, 3485-3492.	2.6	2
36	3D Bioprinting Using a Templated Porous Bioink. Advanced Healthcare Materials, 2016, 5, 1724-1730.	3.9	148

#	Article	IF	CITATIONS
37	Synthesis of Cationized Magnetoferritin for Ultra-fast Magnetization of Cells. Journal of Visualized Experiments, 2016, , .	0.2	1
38	Dynamic Behavior in Enzyme–Polymer Surfactant Hydrogel Films. Advanced Materials, 2016, 28, 1597-1602.	11.1	14
39	Strategies for cell membrane functionalization. Experimental Biology and Medicine, 2016, 241, 1098-1106.	1.1	21
40	Ultra-fast stem cell labelling using cationised magnetoferritin. Nanoscale, 2016, 8, 7474-7483.	2.8	27
41	Highâ€Temperature Electrochemistry of a Solventâ€Free Myoglobin Melt. ChemElectroChem, 2015, 2, 976-981.	1.7	7
42	Structure and function of the silicifying peptide R5. Journal of Materials Chemistry B, 2015, 3, 2607-2614.	2.9	56
43	Artificial membrane-binding proteins stimulate oxygenation of stem cells during engineering of large cartilage tissue. Nature Communications, 2015, 6, 7405.	5.8	64
44	Stability and Orientational Order of Gold Nanorods in Nematic Suspensions: A Small Angle X-ray Scattering Study. Molecular Crystals and Liquid Crystals, 2015, 610, 44-50.	0.4	4
45	Photocatalytic multiphase micro-droplet reactors based on complex coacervation. Chemical Communications, 2015, 51, 8600-8602.	2.2	30
46	Cell paintballing using optically targeted coacervate microdroplets. Chemical Science, 2015, 6, 6106-6111.	3.7	18
47	Fatty acid membrane assembly on coacervate microdroplets as a step towards a hybrid protocell model. Nature Chemistry, 2014, 6, 527-533.	6.6	314
48	Molecular Dynamics Simulations Reveal a Dielectric-Responsive Coronal Structure in Protein–Polymer Surfactant Hybrid Nanoconstructs. Journal of the American Chemical Society, 2014, 136, 16824-16831.	6.6	42
49	Self-Organization of Glucose Oxidase–Polymer Surfactant Nanoconstructs in Solvent-Free Soft Solids and Liquids. Journal of Physical Chemistry B, 2014, 118, 11573-11580.	1.2	21
50	Enzyme activity in liquid lipase melts as a step towards solvent-free biology at 150 °C. Nature Communications, 2014, 5, 5058.	5.8	74
51	Redox Transitions in an Electrolyte-Free Myoglobin Fluid. Journal of the American Chemical Society, 2013, 135, 18311-18314.	6.6	24
52	Small-molecule uptake in membrane-free peptide/nucleotide protocells. Soft Matter, 2013, 9, 7647.	1.2	62
53	Enhanced catalytic activity in organic solvents using molecularly dispersed haemoglobin–polymer surfactant constructs. Chemical Communications, 2013, 49, 9561.	2.2	14
54	Enzymatically Active Self‣tanding Proteinâ€Polymer Surfactant Films Prepared by Hierarchical Selfâ€Assembly. Advanced Materials, 2013, 25, 2005-2010.	11.1	36

#	Article	IF	CITATIONS
55	Isolation of a Highly Reactive β-Sheet-Rich Intermediate of Lysozyme in a Solvent-Free Liquid Phase. Journal of Physical Chemistry B, 2013, 117, 8400-8407.	1.2	25
56	Polymer/nucleotide droplets as bio-inspired functional micro-compartments. Soft Matter, 2012, 8, 6004.	1.2	89
57	Magnetizing DNA and Proteins Using Responsive Surfactants. Advanced Materials, 2012, 24, 6244-6247.	11.1	68
58	Hyper-thermal stability and unprecedented re-folding of solvent-free liquid myoglobin. Chemical Science, 2012, 3, 1839.	3.7	49
59	A Polymer Surfactant Corona Dynamically Replaces Water in Solvent-Free Protein Liquids and Ensures Macromolecular Flexibility and Activity. Journal of the American Chemical Society, 2012, 134, 13168-13171.	6.6	45
60	Liquid Viruses by Nanoscale Engineering of Capsid Surfaces. Advanced Materials, 2012, 24, 4557-4563.	11.1	29
61	Nematic Directorâ€Induced Switching of Assemblies of Hexagonally Packed Gold Nanorods. Advanced Materials, 2012, 24, 4424-4429.	11.1	16
62	Liquid Proteins—A New Frontier for Biomolecule-Based Nanoscience. ACS Nano, 2011, 5, 6085-6091.	7.3	56
63	Peptide–nucleotide microdroplets as a step towards a membrane-free protocell model. Nature Chemistry, 2011, 3, 720-724.	6.6	469
64	Engineered Synthetic Virus‣ike Particles and Their Use in Vaccine Delivery. ChemBioChem, 2011, 12, 100-109.	1.3	52
65	Synthetic Viruslike Particles and Hybrid Constructs Based on Lipopeptide Selfâ€Assembly. Small, 2010, 6, 1191-1196.	5.2	17
66	Reversible dioxygen binding in solvent-free liquid myoglobin. Nature Chemistry, 2010, 2, 622-626.	6.6	102
67	Protein interfacial structure and nanotoxicology. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2009, 600, 263-265.	0.7	3
68	Self-organized structural hierarchy in mixed polysaccharide sponges. Soft Matter, 2009, 5, 3081.	1.2	23
69	Membrane stabilization and transformation in organoclay–vesicle hybrid constructs. Soft Matter, 2009, 5, 2183.	1.2	2
70	Solventâ€Free Protein Liquids and Liquid Crystals. Angewandte Chemie - International Edition, 2009, 48, 6242-6246.	7.2	121
71	Surface movement in water of splendipherin, the aquatic male sex pheromone of the tree frog <i>Litoria splendida</i> . FEBS Journal, 2008, 275, 3362-3374.	2.2	12
72	Effect of the Airâ^'Water Interface on the Structure of Lysozyme in the Presence of Guanidinium Chloride. Journal of Physical Chemistry B, 2008, 112, 9532-9539.	1.2	31

#	Article	IF	CITATIONS
73	Reactions of isolated mono-molecular protein films. Soft Matter, 2008, 4, 2192.	1.2	13
74	Preparation of high quality nanowires by tobacco mosaic virus templating of gold nanoparticles. Journal of Materials Chemistry, 2008, 18, 4796.	6.7	107
75	Effect of the Airâ^'Water Interface on the Stability of β-Lactoglobulin. Journal of Physical Chemistry B, 2007, 111, 13527-13537.	1.2	52
76	Kinetics of adsorption of lysozyme at the air–water interface and the role of protein charge. Physica B: Condensed Matter, 2006, 385-386, 716-718.	1.3	10
77	Aggregation in a high internal phase emulsion observed by SANS and USANS. Physica B: Condensed Matter, 2006, 385-386, 776-779.	1.3	17
78	Proteinâ^'Poly(silicic) Acid Interactions at The Air/Solution Interface. Journal of Physical Chemistry B, 2005, 109, 20878-20886.	1.2	8