Wirulda Pootakham

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823714/publications.pdf

Version: 2024-02-01

53 papers 3,980 citations

331670 21 h-index 52 g-index

54 all docs

54 docs citations

54 times ranked 5245 citing authors

#	Article	IF	CITATIONS
1	A chromosomeâ€scale reference genome assembly of yellow mangrove (⟨i⟩Bruguiera parviflora⟨ i⟩) reveals a whole genome duplication event associated with the Rhizophoraceae lineage. Molecular Ecology Resources, 2022, 22, 1939-1953.	4.8	13
2	A <i>de novo</i> reference assembly of the yellow mangrove <i>Ceriops zippeliana</i> genome. G3: Genes, Genomes, Genetics, 2022, 12, .	1.8	7
3	De Novo Reference Assembly of the Upriver Orange Mangrove (<i>Bruguiera sexangula</i>) Genome. Genome Biology and Evolution, 2022, 14, .	2.5	8
4	Comparative Analysis and Phylogenetic Relationships of Ceriops Species (Rhizophoraceae) and Avicennia lanata (Acanthaceae): Insight into the Chloroplast Genome Evolution between Middle and Seaward Zones of Mangrove Forests. Biology, 2022, 11, 383.	2.8	10
5	The First Genetic Linkage Map of Winged Bean [Psophocarpus tetragonolobus (L.) DC.] and QTL Mapping for Flower-, Pod-, and Seed-Related Traits. Plants, 2022, 11, 500.	3.5	5
6	A SNP variation in an expansin (<i>EgExp4</i>) gene affects height in oil palm. PeerJ, 2022, 10, e13046.	2.0	4
7	Assembly of a hybrid mangrove, Bruguiera hainesii, and its two ancestral contributors, Bruguiera cylindrica and Bruguiera gymnorhiza. Genomics, 2022, 114, 110382.	2.9	5
8	Chromosomeâ€level genome assembly of Indian mangrove (<i>Ceriops tagal</i>) revealed a genomeâ€wide duplication event predating the divergence of Rhizophoraceae mangrove species. Plant Genome, 2022, 15, .	2.8	8
9	A chromosomeâ€scale assembly of the black gram (<i>Vigna mungo</i>) genome. Molecular Ecology Resources, 2021, 21, 238-250.	4.8	33
10	De novo assemblies of <i>Luffa acutangula</i> and <i>Luffa cylindrica</i> genomes reveal an expansion associated with substantial accumulation of transposable elements. Molecular Ecology Resources, 2021, 21, 212-225.	4.8	23
11	A chromosomeâ€level assembly of the black tiger shrimp (<i>Penaeus monodon</i>) genome facilitates the identification of growthâ€associated genes. Molecular Ecology Resources, 2021, 21, 1620-1640.	4.8	43
12	De novo chromosome-level assembly of the Centella asiatica genome. Genomics, 2021, 113, 2221-2228.	2.9	14
13	Taxonomic profiling of Symbiodiniaceae and bacterial communities associated with Indo-Pacific corals in the Gulf of Thailand using PacBio sequencing of full-length ITS and 16S rRNA genes. Genomics, 2021, 113, 2717-2729.	2.9	14
14	Identification of Candidate Gene-Based Markers for Girth Growth in Rubber Trees. Plants, 2021, 10, 1440.	3.5	3
15	Comparative Analysis of PacBio and Oxford Nanopore Sequencing Technologies for Transcriptomic Landscape Identification of Penaeus monodon. Life, 2021, 11, 862.	2.4	7
16	Complete chloroplast genome sequences of five <i>Bruguiera</i> species (Rhizophoraceae): comparative analysis and phylogenetic relationships. PeerJ, 2021, 9, e12268.	2.0	13
17	De novo Assembly of the Brain Coral Platygyra sinensis Genome. Frontiers in Marine Science, 2021, 8, .	2.5	2
18	Transcriptome sequencing revealed the influence of blue light on the expression levels of light-stress response genes in Centella asiatica. PLoS ONE, 2021, 16, e0260468.	2.5	6

#	Article	IF	CITATIONS
19	The Genome and Transcriptome Analysis of the Vigna mungo Chloroplast. Plants, 2020, 9, 1247.	3.5	6
20	Assembly of the durian chloroplast genome using long PacBio reads. Scientific Reports, 2020, 10, 15980.	3.3	12
21	Chloroplast genome data of Luffa acutangula and Luffa aegyptiaca and their phylogenetic relationships. Data in Brief, 2020, 33, 106470.	1.0	5
22	The complete mitochondrial genome of <i>Luffa acutangula</i> . Mitochondrial DNA Part B: Resources, 2020, 5, 3208-3209.	0.4	2
23	Transcriptome analyses reveal the synergistic effects of feeding and eyestalk ablation on ovarian maturation in black tiger shrimp. Scientific Reports, 2020, 10, 3239.	3.3	16
24	A Novel Full-Length Transcriptome Resource for Black Tiger Shrimp (Penaeus monodon) Developed Using Isoform Sequencing (Iso-Seq). Frontiers in Marine Science, 2020, 7, .	2.5	21
25	The BPM 24 Rubber Tree Genome, Organellar Genomes and Synteny Within the Family Euphorbiaceae. Compendium of Plant Genomes, 2020, , 55-66.	0.5	3
26	Development of Molecular Markers in Hevea brasiliensis for Marker-Assisted Breeding. Compendium of Plant Genomes, 2020, , 67-79.	0.5	7
27	Optimization of high molecular weight DNA extraction methods in shrimp for a long-read sequencing platform. PeerJ, 2020, 8, e10340.	2.0	15
28	Differential expression between drought-tolerant and drought-sensitive sugarcane under mild and moderate water stress as revealed by a comparative analysis of leaf transcriptome. PeerJ, 2020, 8, e9608.	2.0	22
29	Genome-wide association mapping of virulence gene in rice blast fungus Magnaporthe oryzae using a genotyping by sequencing approach. Genomics, 2019, 111, 661-668.	2.9	25
30	Heatâ€induced shift in coral microbiome reveals several members of the Rhodobacteraceae family as indicator species for thermal stress in <i>Porites lutea</i> . MicrobiologyOpen, 2019, 8, e935.	3.0	76
31	Dynamics of coralâ€associated microbiomes during a thermal bleaching event. MicrobiologyOpen, 2018, 7, e00604.	3.0	41
32	Development of a Novel Reference Transcriptome for Scleractinian Coral Porites lutea Using Single-Molecule Long-Read Isoform Sequencing (Iso-Seq). Frontiers in Marine Science, 2018, 5, .	2.5	7
33	Uncovering full-length transcript isoforms of sugarcane cultivar Khon Kaen 3 using single-molecule long-read sequencing. PeerJ, 2018, 6, e5818.	2.0	21
34	Transcriptome analysis of oil palm inflorescences revealed candidate genes for an auxin signaling pathway involved in parthenocarpy. PeerJ, 2018, 6, e5975.	2.0	7
35	De novo hybrid assembly of the rubber tree genome reveals evidence of paleotetraploidy in Hevea species. Scientific Reports, 2017, 7, 41457.	3.3	95
36	High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Scientific Reports, 2017, 7, 2774.	3.3	106

3

#	Article	IF	Citations
37	The two chromosomes of the mitochondrial genome of a sugarcane cultivar: assembly and recombination analysis using long PacBio reads. Scientific Reports, 2016, 6, 31533.	3.3	55
38	Effects of methylation-sensitive enzymes on the enrichment of genic SNPs and the degree of genome complexity reduction in a two-enzyme genotyping-by-sequencing (GBS) approach: a case study in oil palm (Elaeis guineensis). Molecular Breeding, 2016, 36, 154.	2.1	35
39	Genome-wide SNP discovery and identification of QTL associated with agronomic traits in oil palm using genotyping-by-sequencing (GBS). Genomics, 2015, 105, 288-295.	2.9	132
40	Construction of a high-density integrated genetic linkage map of rubber tree (Hevea brasiliensis) using genotyping-by-sequencing (GBS). Frontiers in Plant Science, 2015, 6, 367.	3.6	102
41	Critical Function of a <i>Chlamydomonas reinhardtii</i> Putative Polyphosphate Polymerase Subunit during Nutrient Deprivation Â. Plant Cell, 2014, 26, 4214-4229.	6.6	72
42	Large-Scale SNP Discovery through RNA Sequencing and SNP Genotyping by Targeted Enrichment Sequencing in Cassava (Manihot esculenta Crantz). PLoS ONE, 2014, 9, e116028.	2.5	58
43	Development and characterization of singleâ€nucleotide polymorphism markers from 454 transcriptome sequences in oil palm (<i><scp>E</scp>laeis guineensis</i>). Plant Breeding, 2013, 132, 711-717.	1.9	12
44	Tiered Regulation of Sulfur Deprivation Responses in <i>Chlamydomonas reinhardtii</i> and Identification of an Associated Regulatory Factor Â. Plant Physiology, 2013, 162, 195-211.	4.8	34
45	Development of genomicâ€derived simple sequence repeat markers in <i>Hevea brasiliensis</i> from 454 genome shotgun sequences. Plant Breeding, 2012, 131, 555-562.	1.9	13
46	Reverse genetics in Chlamydomonas: a platform for isolating insertional mutants. Plant Methods, 2011, 7, 24.	4.3	87
47	Single nucleotide polymorphism marker development in the rubber tree, <i>Hevea brasiliensis</i> (Euphorbiaceae). American Journal of Botany, 2011, 98, e337-8.	1.7	39
48	Identification and Regulation of Plasma Membrane Sulfate Transporters in Chlamydomonas Â. Plant Physiology, 2010, 153, 1653-1668.	4.8	90
49	Genetic Interactions Between Regulators of Chlamydomonas Phosphorus and Sulfur Deprivation Responses. Genetics, 2009, 181, 889-905.	2.9	53
50	Responses to Macronutrient Deprivation. , 2009, , 307-348.		2
51	The Central Role of a SNRK2 Kinase in Sulfur Deprivation Responses Â. Plant Physiology, 2008, 147, 216-227.	4.8	70
52	The <i>Chlamydomonas</i> Genome Reveals the Evolution of Key Animal and Plant Functions. Science, 2007, 318, 245-250.	12.6	2,354
53	Insights into the acclimation of Chlamydomonas reinhardtii to sulfur deprivation. Photosynthesis Research, 2005, 86, 475-489.	2.9	63