
Jaana Rysä

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8237003/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Monitoring temporal trends of dioxins, organochlorine pesticides and chlorinated paraffins in pooled serum samples collected from Northern Norwegian women: The MISA cohort study. Environmental Research, 2022, 204, 111980.	3.7	13
2	Pregnane X Receptor‒4βâ€Hydroxycholesterol Axis in the Regulation of Overweight―and Obesityâ€Induced Hypertension. Journal of the American Heart Association, 2022, 11, e023492.	1.6	7
3	Selfâ€reported alcohol consumption of pregnant women and their partners correlates both before and during pregnancy: AÂcohort study with 21,472 singleton pregnancies. Alcoholism: Clinical and Experimental Research, 2022, 46, 797-808.	1.4	7
4	Aflatoxin B1 targeted gene expression profiles in human placental primary trophoblast cells. Current Research in Toxicology, 2022, , 100082.	1.3	0
5	Menaquinone 4 increases plasma lipid levels in hypercholesterolemic mice. Scientific Reports, 2021, 11, 3014.	1.6	3
6	Rifampicin induces the bone form of alkaline phosphatase in humans. Basic and Clinical Pharmacology and Toxicology, 2021, , .	1.2	5
7	Non-occupational exposure to pesticides and health markers in general population in Northern Finland: Differences between sexes. Environment International, 2021, 156, 106766.	4.8	9
8	Changes in Circulating Metabolome Precede Alcoholâ€Related Diseases in Middleâ€Aged Men: A Prospective Populationâ€Based Study With a 30â€Year Followâ€Up. Alcoholism: Clinical and Experimental Research, 2020, 44, 2457-2467.	1.4	6
9	Aryl hydrocarbon receptor (AhR) agonist β-naphthoflavone regulated gene networks in human primary trophoblasts. Reproductive Toxicology, 2020, 96, 370-379.	1.3	3
10	Circulating protein biomarkers predict incident hypertensive heart failure independently of Nâ€ŧerminal proâ€Bâ€ŧype natriuretic peptide levels. ESC Heart Failure, 2020, 7, 1891-1899.	1.4	7
11	Phosphorylation of GATA4 at serine 105 is required for left ventricular remodelling process in angiotensin Ilâ€induced hypertension in rats. Basic and Clinical Pharmacology and Toxicology, 2020, 127, 178-195.	1.2	12
12	Pregnane X Receptor Activator Rifampin Increases Blood Pressure and Stimulates Plasma Renin Activity. Clinical Pharmacology and Therapeutics, 2020, 108, 856-865.	2.3	16
13	4β-Hydroxycholesterol Signals From the Liver to Regulate Peripheral Cholesterol Transporters. Frontiers in Pharmacology, 2020, 11, 361.	1.6	12
14	Novel insights into the molecular basis of calcific aortic valve disease. Journal of Thoracic Disease, 2020, 12, 6419-6421.	0.6	0
15	Novel insights into the molecular basis of calcific aortic valve disease. Journal of Thoracic Disease, 2020, 12, 6419-6421.	0.6	1
16	Nutritional status modifies pregnane X receptor regulated transcriptome. Scientific Reports, 2019, 9, 16728.	1.6	15
17	Characterizing valve dynamics in mice by highâ€resolution cineâ€MRI. NMR in Biomedicine, 2019, 32, e4108.	1.6	5
18	Heat shock protein 90 is downregulated in calcific aortic valve disease. BMC Cardiovascular Disorders, 2019, 19, 306.	0.7	18

Jaana Rysä

#	Article	IF	CITATIONS
19	Increased mesenchymal podoplanin expression is associated with calcification in aortic valves. Cardiovascular Pathology, 2019, 39, 30-37.	0.7	8
20	SDF1 gradient associates with the distribution of c-Kit+ cardiac cells in the heart. Scientific Reports, 2018, 8, 1160.	1.6	13
21	Activation of nuclear receptor PXR impairs glucose tolerance and dysregulates GLUT2 expression and subcellular localization in liver. Biochemical Pharmacology, 2018, 148, 253-264.	2.0	33
22	Mechanical stretch induced transcriptomic profiles in cardiac myocytes. Scientific Reports, 2018, 8, 4733.	1.6	51
23	Cardiac Actions of a Small Molecule Inhibitor Targeting GATA4–NKX2-5 Interaction. Scientific Reports, 2018, 8, 4611.	1.6	29
24	Whole grain intake associated molecule 5-aminovaleric acid betaine decreases β-oxidation of fatty acids in mouse cardiomyocytes. Scientific Reports, 2018, 8, 13036.	1.6	24
25	Peroxisome proliferator activated receptor gamma (PPAR-γ) ligand pioglitazone regulated gene networks in term human primary trophoblast cells. Reproductive Toxicology, 2018, 81, 99-107.	1.3	11
26	Cellular Mechanisms of Valvular Thickening in Early and Intermediate Calcific Aortic Valve Disease. Current Cardiology Reviews, 2018, 14, 264-271.	0.6	21
27	Discovery of Small Molecules Targeting the Synergy of Cardiac Transcription Factors GATA4 and NKX2-5. Proceedings for Annual Meeting of the Japanese Pharmacological Society, 2018, WCP2018, PO4-2-24.	0.0	0
28	Molecular targets of chloropicrin in human airway epithelial cells. Toxicology in Vitro, 2017, 42, 247-254.	1.1	4
29	Transcription factor PEX1 modulates extracellular matrix turnover through regulation of MMP-9 expression. Cell and Tissue Research, 2017, 367, 369-385.	1.5	10
30	Targeting vasoactive peptides for managing calcific aortic valve disease. Annals of Medicine, 2017, 49, 63-74.	1.5	14
31	Mitogenâ€activated protein kinase p38 target regenerating isletâ€derived 3 <i>γ</i> expression is upregulated in cardiac inflammatory response in the rat heart. Physiological Reports, 2016, 4, e12996.	0.7	6
32	Regulation of hepatic energy metabolism by the nuclear receptor PXR. Biochimica Et Biophysica Acta - Gene Regulatory Mechanisms, 2016, 1859, 1072-1082.	0.9	77
33	Gene expression profiling of human calcific aortic valve disease. Genomics Data, 2016, 7, 107-108.	1.3	12
34	TSC-22 up-regulates collagen 3a1 gene expression in the rat heart. BMC Cardiovascular Disorders, 2015, 15, 122.	0.7	2
35	WDR12, a Member of Nucleolar PeBoW-Complex, Is Up-Regulated in Failing Hearts and Causes Deterioration of Cardiac Function. PLoS ONE, 2015, 10, e0124907.	1.1	7
36	The Early-Onset Myocardial Infarction Associated PHACTR1 Gene Regulates Skeletal and Cardiac Alpha-Actin Gene Expression. PLoS ONE, 2015, 10, e0130502.	1.1	16

Jaana Rysä

#	Article	IF	CITATIONS
37	MicroRNA-125b and chemokine CCL4 expression are associated with calcific aortic valve disease. Annals of Medicine, 2015, 47, 423-429.	1.5	55
38	Bone morphogenetic protein-2 â^' A potential autocrine/paracrine factor in mediating the stretch activated B-type and atrial natriuretic peptide expression in cardiac myocytes. Molecular and Cellular Endocrinology, 2015, 399, 9-21.	1.6	11
39	Characterization of the Regulatory Mechanisms of Activating Transcription Factor 3 by Hypertrophic Stimuli in Rat Cardiomyocytes. PLoS ONE, 2014, 9, e105168.	1.1	20
40	InÂvivo biocompatibility of porous silicon biomaterials for drug delivery to the heart. Biomaterials, 2014, 35, 8394-8405.	5.7	73
41	Increased thrombospondin-2 in human fibrosclerotic and stenotic aortic valves. Atherosclerosis, 2012, 220, 66-71.	0.4	35
42	(Pro)renin Receptor Triggers Distinct Angiotensin II-Independent Extracellular Matrix Remodeling and Deterioration of Cardiac Function. PLoS ONE, 2012, 7, e41404.	1.1	39
43	Metoprolol Treatment Lowers Thrombospondinâ€4 Expression in Rats with Myocardial Infarction and Left Ventricular Hypertrophy. Basic and Clinical Pharmacology and Toxicology, 2010, 107, 709-717.	1.2	17
44	CATA-4 Is an Angiogenic Survival Factor of the Infarcted Heart. Circulation: Heart Failure, 2010, 3, 440-450.	1.6	62
45	A novel p38 MAPK target dyxin is rapidly induced by mechanical load in the heart. Blood Pressure, 2010, 19, 54-63.	0.7	7
46	Upregulation of cardiac matrix Gla protein expression in response to hypertrophic stimuli. Blood Pressure, 2009, 18, 286-293.	0.7	1
47	Noncollagenous bone matrix proteins as a part of calcific aortic valve disease regulation. Human Pathology, 2008, 39, 1695-1701.	1.1	33
48	Distinct Downregulation of C-Type Natriuretic Peptide System in Human Aortic Valve Stenosis. Circulation, 2007, 116, 1283-1289.	1.6	46
49	Early left ventricular gene expression profile in response to increase in blood pressure. Blood Pressure, 2006, 15, 375-383.	0.7	12
50	Identification of Cell Cycle Regulatory and Inflammatory Genes As Predominant Targets of p38 Mitogen-Activated Protein Kinase in the Heart. Circulation Research, 2006, 99, 485-493.	2.0	59
51	p38 Kinase rescues failing myocardium after myocardial infarction: evidence for angiogenic and antiâ€apoptotic mechanisms. FASEB Journal, 2006, 20, 1907-1909.	0.2	58
52	Distinct Upregulation of Extracellular Matrix Genes in Transition From Hypertrophy to Hypertensive Heart Failure. Hypertension, 2005, 45, 927-933.	1.3	106
53	Expression of bradykinin receptors in the left ventricles of rats with pressure overload hypertrophy and heart failure. Journal of Hypertension, 2003, 21, 1729-1736.	0.3	27