Zhijun Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8236993/publications.pdf

Version: 2024-02-01

42 papers

2,047 citations

304368

22

h-index

264894 42 g-index

42 all docs 42 docs citations

42 times ranked 2823 citing authors

#	Article	IF	CITATIONS
1	A Bioinspired Fiveâ€Coordinated Singleâ€Atom Iron Nanozyme for Tumor Catalytic Therapy. Advanced Materials, 2022, 34, e2107088.	11.1	133
2	Tensileâ€Strained Palladium Nanosheets for Synthetic Catalytic Therapy and Phototherapy. Advanced Materials, 2022, 34, .	11.1	18
3	Oxidation Etchingâ€Induced Postâ€Crystallization of Palladium Nanosheets for Efficient Catalytic Hydrogenation. Small, 2021, 17, e2006624.	5.2	12
4	Surface Wettability of Nanoparticle Modulated Sonothrombolysis. Advanced Materials, 2021, 33, e2007073.	11.1	28
5	Degradable Carbon–Silica Nanocomposite with Immunoadjuvant Property for Dual-Modality Photothermal/Photodynamic Therapy. ACS Nano, 2020, 14, 2847-2859.	7.3	103
6	MOFâ€Derived Doubleâ€Layer Hollow Nanoparticles with Oxygen Generation Ability for Multimodal Imagingâ€Guided Sonodynamic Therapy. Angewandte Chemie - International Edition, 2020, 59, 13557-13561.	7.2	177
7	MOFâ€Derived Doubleâ€Layer Hollow Nanoparticles with Oxygen Generation Ability for Multimodal Imagingâ€Guided Sonodynamic Therapy. Angewandte Chemie, 2020, 132, 13659-13663.	1.6	129
8	Degradable Holey Palladium Nanosheets with Highly Active 1D Nanoholes for Synergetic Phototherapy of Hypoxic Tumors. Journal of the American Chemical Society, 2020, 142, 5649-5656.	6.6	109
9	Ultrasound-Assisted Fabrication of Hierarchical Rodlike Graphitic Carbon Nitride with Fewer Defects and Enhanced Visible-Light Photocatalytic Activity. ACS Sustainable Chemistry and Engineering, 2018, 6, 3187-3195.	3.2	64
10	In Situ Growth of Pd Nanosheets on g ₃ N ₄ Nanosheets with Well ontacted Interface and Enhanced Catalytic Performance for 4â€Nitrophenol Reduction. Small, 2018, 14, e1801812.	5.2	74
11	Carbon-coated Cu-Co bimetallic nanoparticles as selective and recyclable catalysts for production of biofuel 2,5-dimethylfuran. Applied Catalysis B: Environmental, 2017, 200, 192-199.	10.8	205
12	A fluorescent carbon nitride nanofibrous hydrogel for selective sensing of Cu ²⁺ . RSC Advances, 2017, 7, 1318-1325.	1.7	18
13	Vapor-Phase Selective Oxidation of Toluene Catalyzed by Graphitic Carbon Nitride Supported Vanadium Oxide. Catalysis Letters, 2017, 147, 509-516.	1.4	11
14	Recyclable and Selective Nitroarene Hydrogenation Catalysts Based on Carbonâ€Coated Cobalt Oxide Nanoparticles. ChemCatChem, 2016, 8, 1132-1138.	1.8	39
15	Hydrogen from Water over Openlyâ€Structured Graphitic Carbon Nitride Polymer through Photocatalysis. ChemSusChem, 2016, 9, 478-484.	3.6	29
16	Hydrogen-transfer conversion of furfural into levulinate esters as potential biofuel feedstock. Journal of Energy Chemistry, 2016, 25, 888-894.	7.1	22
17	Cycloaddition of CO ₂ and epoxide catalyzed by amino- and hydroxyl-rich graphitic carbon nitride. Catalysis Science and Technology, 2016, 6, 2942-2948.	2.1	80
18	Tuning catalytic selectivity of liquid-phase hydrogenation of furfural via synergistic effects of supported bimetallic catalysts. Applied Catalysis A: General, 2015, 500, 23-29.	2.2	109

#	Article	IF	Citations
19	Sustainable catalytic oxidation of alcohols over the interface between air and water. Green Chemistry, 2015, 17, 2325-2329.	4.6	22
20	Nanoporous photocatalysts developed through heat-driven stacking of graphitic carbon nitride nanosheets. RSC Advances, 2015, 5, 14027-14033.	1.7	29
21	Sustainable production of aromatics from bio-oils through combined catalytic upgrading with in situ generated hydrogen. Applied Catalysis B: Environmental, 2015, 165, 547-554.	10.8	21
22	Porous and low-defected graphitic carbon nitride nanotubes for efficient hydrogen evolution under visible light irradiation. RSC Advances, 2015, 5, 102700-102706.	1.7	46
23	Facile synthesis of Ag/AgBr/RGO nanocomposite as a highly efficient sunlight plasmonic photocatalyst. Catalysis Communications, 2015, 59, 140-144.	1.6	17
24	Pt nanoparticles over TiO2–ZrO2 mixed oxide as multifunctional catalysts for an integrated conversion of furfural to 1,4-butanediol. Applied Catalysis A: General, 2014, 478, 252-258.	2.2	41
25	Integrated Catalytic Process to Directly Convert Furfural to Levulinate Ester with High Selectivity. ChemSusChem, 2014, 7, 202-209.	3.6	62
26	Nanosheets of graphitic carbon nitride as metal-free environmental photocatalysts. Catalysis Science and Technology, 2014, 4, 4258-4264.	2.1	35
27	Stability or flexibility: Metal nanoparticles supported over cross-linked functional polymers as catalytic active sites for hydrogenation and carbonylation. Applied Catalysis A: General, 2014, 481, 54-63.	2.2	14
28	Well-dispersed g-C3N4 nanophases in mesoporous silica channels and their catalytic activity for carbon dioxide activation and conversion. Applied Catalysis B: Environmental, 2013, 136-137, 269-277.	10.8	168
29	Sustainable catalysts for methanol carbonylation. Green Chemistry, 2013, 15, 1600.	4.6	25
30	A Sustainable Process for Catalytic Oxidative Bromination with Molecular Oxygen. ChemSusChem, 2013, 6, 1337-1340.	3.6	20
31	Direct catalytic conversion of glycerol to liquid-fuel classes over Ir–Re supported on W-doped mesostructured silica. Applied Catalysis A: General, 2012, 449, 163-171.	2.2	6
32	Self-assembled nanostructures of Ag6[PV3Mo9O40] with N-donor ligands and their catalytic activity. RSC Advances, 2012, 2, 11449.	1.7	9
33	Highly Stable, Recyclable Copper Nanoparticles as Catalysts for the Formation of CN Bonds. ChemCatChem, 2012, 4, 1741-1745.	1.8	12
34	Formation of a "Hard Microemulsion―and Its Role in Controllable Synthesis of Nanoparticles within a Functional Polymer Matrix. Langmuir, 2012, 28, 736-740.	1.6	5
35	Efficient and recyclable catalysts for selective oxidation of polyols in H2O with molecular oxygen. Green Chemistry, 2011, 13, 3414.	4.6	19
36	Nitrogen-rich copolymeric microsheets supporting copper nanoparticles for catalyzing arylation of N-heterocycles. Applied Catalysis A: General, 2011, 403, 104-111.	2.2	29

ZHIJUN HUANG

#	Article	IF	CITATION
37	Synthesis of ethanol from syngas over iron-promoted Rh immobilized on modified SBA-15 molecular sieve: Effect of iron loading. Chemical Engineering Research and Design, 2011, 89, 249-253.	2.7	36
38	Preparation and structure of calcium peroxideâ€ŧemplated porous calcium carbonate crystals. Crystal Research and Technology, 2011, 46, 664-668.	0.6	5
39	Direct conversion of syngas to ethanol over Rh/Mn-supported on modified SBA-15 molecular sieves: Effect of supports. Fuel Processing Technology, 2011, 92, 456-461.	3.7	36
40	Preparation of ethylene/1â€octene copolymers from ethylene stock with tandem catalytic system. Journal of Applied Polymer Science, 2008, 107, 3071-3075.	1.3	10
41	Performance of various aluminoxane activators in ethylene tetramerization based on PNP/Cr(III) catalyst system. Catalysis Communications, 2007, 8, 1145-1148.	1.6	19
42	Ethylene polymerization by novel highly active iron/acetyl(imino)pyridyl complex. Science Bulletin, 2006, 51, 2197-2200.	1.7	1