Roderick G Eggert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8236867/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of methods and data to determine raw material criticality. Resources, Conservation and Recycling, 2020, 155, 104617.	10.8	137
2	Deep-sea mining of seafloor massive sulfides. Marine Policy, 2010, 34, 728-732.	3.2	136
3	Depletion and the Future Availability of Petroleum Resources. Energy Journal, 2009, 30, 141-174.	1.7	131
4	Minerals go critical. Nature Chemistry, 2011, 3, 688-691.	13.6	105
5	Energy-critical elements for sustainable development. MRS Bulletin, 2012, 37, 405-410.	3.5	74
6	Evaluating the availability of gallium, indium, and tellurium from recycled photovoltaic modules. Solar Energy Materials and Solar Cells, 2015, 138, 58-71.	6.2	67
7	The boom in mineral markets: How long might it last?. Resources Policy, 2008, 33, 125-128.	9.6	61
8	Public policy and future mineral supplies. Resources Policy, 2018, 57, 55-60.	9.6	55
9	Global Electrification of Vehicles and Intertwined Material Supply Chains of Cobalt, Copper and Nickel. Resources, Conservation and Recycling, 2021, 167, 105198.	10.8	47
10	Supply-Chain Dynamics of Tellurium, Indium, and Gallium Within the Context of PV Manufacturing Costs. IEEE Journal of Photovoltaics, 2013, 3, 833-837.	2.5	46
11	China's public policies toward rare earths, 1975–2018. Mineral Economics, 2020, 33, 127-151.	2.8	36
12	Volatility of by-product metal and mineral prices. Resources Policy, 2016, 47, 69-77.	9.6	33
13	Potential uranium supply from phosphoric acid: A U.S. analysis comparing solvent extraction and lon exchange recovery. Resources Policy, 2016, 49, 222-231.	9.6	25
14	Multifaceted Material Substitution: The Case of NdFeB Magnets, 2010–2015. Jom, 2016, 68, 1964-1971.	1.9	24
15	International Mineral Economics. , 1988, , .		23
16	Thorium: Crustal abundance, joint production, and economic availability. Resources Policy, 2015, 44, 81-93.	9.6	22
17	Costs, Substitution, and Material Use: The Case of Rare Earth Magnets. Environmental Science & Technology, 2018, 52, 3803-3811.	10.0	20
18	Greater circularity leads to lower criticality, and other links between criticality and the circular economy. Resources, Conservation and Recycling, 2020, 159, 104718.	10.8	19

RODERICK G EGGERT

#	Article	IF	CITATIONS
19	Simulating producer responses to selected chinese rare earth policies. Resources Policy, 2018, 55, 31-48.	9.6	18
20	Reconciling Diverging Views on Mineral Depletion: A Modified Cumulative Availability Curve Applied to Copper Resources. Resources, Conservation and Recycling, 2020, 161, 104896.	10.8	17
21	The Rare Earths as Critical Materials. Fundamental Theories of Physics, 2016, 50, 19-46.	0.3	10
22	The role of industrial actors in the circular economy for critical raw materials: a framework with case studies across a range of industries. Mineral Economics, 2023, 36, 301-319.	2.8	8
23	An empirical and conceptual introduction. Resources Policy, 1991, 17, 91-99.	9.6	6
24	Understanding relative metal prices and availability: Combining physical and economic perspectives. Journal of Industrial Ecology, 2021, 25, 890-899.	5.5	5
25	Managing for successful mineral exploration. Resources Policy, 1993, 19, 173-176.	9.6	4
26	Sustainability and resources policy. Resources Policy, 1995, 21, 3-4.	9.6	4
27	Mineral exploration in the USSR and the USA. Resources Policy, 1985, 11, 128-140.	9.6	1
28	Exploration and access to public lands. Resources Policy, 1989, 15, 115-130.	9.6	1
29	Mining and the Environment. , 0, , .		1
30	Critical materials for permanentÂmagnets. , 2022, , 343-370.		1
31	Exploration's Role in Iron and Aluminum Supply Since the Second World War. Natural Resources Forum, 1985, 9, 187-195.	3.6	0
32	Critical issues in the reform of the mining law in the United States. Jom, 1995, 47, 44-45.	1.9	0
33	Reply to correspondence "Circular economy practices may not always lead to lower criticality or more sustainability; analysis and guidance is needed per case". Resources, Conservation and Recycling, 2021, 165, 105223	10.8	0