
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8236524/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CRYPTOCHROMES promote daily protein homeostasis. EMBO Journal, 2022, 41, e2021108883.	3.5	9
2	A daily temperature rhythm in the human brain predicts survival after brain injury. Brain, 2022, 145, 2031-2048.	3.7	47
3	Detecting Circadian Rhythms in Human Red Blood Cells by Dielectrophoresis. Methods in Molecular Biology, 2022, , 255-264.	0.4	4
4	Using ALLIGATORs to Capture Circadian Bioluminescence. Methods in Molecular Biology, 2022, , 125-135.	0.4	1
5	Redox-coupled rhythm and brews. Nature Chemical Biology, 2021, 17, 373-374.	3.9	4
6	Distinct circadian mechanisms govern cardiac rhythms and susceptibility to arrhythmia. Nature Communications, 2021, 12, 2472.	5.8	33
7	Targeted modification of the Per2 clock gene alters circadian function in mPer2luciferase (mPer2Luc) mice. PLoS Computational Biology, 2021, 17, e1008987.	1.5	7
8	Deep-coverage spatiotemporal proteome of the picoeukaryote Ostreococcus tauri reveals differential effects of environmental and endogenous 24-hour rhythms. Communications Biology, 2021, 4, 1147.	2.0	11
9	CRYPTOCHROMES confer robustness, not rhythmicity, to circadian timekeeping. EMBO Journal, 2021, 40, e106745.	3.5	23
10	Compensatory ion transport buffers daily protein rhythms to regulate osmotic balance and cellular physiology. Nature Communications, 2021, 12, 6035.	5.8	26
11	Inductively Coupled Plasma Mass Spectrometry for Elemental Analysis in Circadian Biology. Methods in Molecular Biology, 2021, 2130, 19-27.	0.4	3
12	Eukaryotic cell biology is temporally coordinated to support the energetic demands of protein homeostasis. Nature Communications, 2020, 11, 4706.	5.8	23
13	Energetic substrate availability regulates synchronous activity in an excitatory neural network. PLoS ONE, 2019, 14, e0220937.	1.1	13
14	Insulin/IGF-1 Drives PERIOD Synthesis to Entrain Circadian Rhythms with Feeding Time. Cell, 2019, 177, 896-909.e20.	13.5	227
15	Casein Kinase 1 Underlies Temperature Compensation of Circadian Rhythms in Human Red Blood Cells. Journal of Biological Rhythms, 2019, 34, 144-153.	1.4	24
16	NADH Shuttling Couples Cytosolic Reductive Carboxylation of Glutamine with Glycolysis in Cells with Mitochondrial Dysfunction. Molecular Cell, 2018, 69, 581-593.e7.	4.5	171
17	Mammalian Circadian Period, But Not Phase and Amplitude, Is Robust Against Redox and Metabolic Perturbations. Antioxidants and Redox Signaling, 2018, 28, 507-520.	2.5	48
18	Signal Transduction: Magnesium Manifests asÂaÂSecond Messenger. Current Biology, 2018, 28, R1403-R1405.	1.8	25

#	Article	IF	CITATIONS
19	Non-transcriptional processes in circadian rhythm generation. Current Opinion in Physiology, 2018, 5, 117-132.	0.9	37
20	Rhythmic potassium transport regulates the circadian clock in human red blood cells. Nature Communications, 2017, 8, 1978.	5.8	62
21	Circadian actin dynamics drive rhythmic fibroblast mobilization during wound healing. Science Translational Medicine, 2017, 9, .	5.8	147
22	Daily magnesium fluxes regulate cellular timekeeping and energy balance. Nature, 2016, 532, 375-379.	13.7	209
23	Intracellular magnesium and the rhythms of life. Cell Cycle, 2016, 15, 2997-2998.	1.3	15
24	The Pentose Phosphate Pathway Regulates the Circadian Clock. Cell Metabolism, 2016, 24, 462-473.	7.2	132
25	Cell autonomous regulation of herpes and influenza virus infection by the circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 10085-10090.	3.3	183
26	In-depth Characterization of Firefly Luciferase as a Reporter of Circadian Gene Expression in Mammalian Cells. Journal of Biological Rhythms, 2016, 31, 540-550.	1.4	39
27	Flyglow: Single-fly observations of simultaneous molecular and behavioural circadian oscillations in controls and an Alzheimer's model. Scientific Reports, 2016, 6, 33759.	1.6	5
28	Reciprocal Control of the Circadian Clock and Cellular Redox State - a Critical Appraisal. Molecules and Cells, 2016, 39, 6-19.	1.0	63
29	Analysis of the Redox Oscillations in the Circadian Clockwork. Methods in Enzymology, 2015, 552, 185-210.	0.4	7
30	Metabolic molecular markers of the tidal clock in the marine crustacean Eurydice pulchra. Current Biology, 2015, 25, R326-R327.	1.8	39
31	Metabolic Cycles in Yeast Share Features Conserved among Circadian Rhythms. Current Biology, 2015, 25, 1056-1062.	1.8	68
32	Effects of caffeine on the human circadian clock in vivo and in vitro. Science Translational Medicine, 2015, 7, 305ra146.	5.8	184
33	Oxidation–Reduction Cycles of Peroxiredoxin Proteins and Nontranscriptional Aspects of Timekeeping. Biochemistry, 2015, 54, 184-193.	1.2	37
34	Class lla Histone Deacetylases Are Conserved Regulators of Circadian Function. Journal of Biological Chemistry, 2014, 289, 34341-34348.	1.6	34
35	Circadian Redox and Metabolic Oscillations in Mammalian Systems. Antioxidants and Redox Signaling, 2014, 20, 2966-2981.	2.5	37
36	Histone methyltransferase MLL3 contributes to genome-scale circadian transcription. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1554-1559.	3.3	107

#	Article	IF	CITATIONS
37	Circadian Rhythms: Hijacking the Cyanobacterial Clock. Current Biology, 2013, 23, R1050-R1052.	1.8	1
38	Cellular Mechanisms of Circadian Pacemaking: Beyond Transcriptional Loops. Handbook of Experimental Pharmacology, 2013, , 67-103.	0.9	52
39	Analysis of core circadian feedback loop in suprachiasmatic nucleus of <i>mCry1-luc</i> transgenic reporter mouse. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 9547-9552.	3.3	56
40	Functional Analysis of Casein Kinase 1 in a Minimal Circadian System. PLoS ONE, 2013, 8, e70021.	1.1	39
41	Circadian regulation of olfaction and an evolutionarily conserved, nontranscriptional marker in <i>Caenorhabditis elegans</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 20479-20484.	3.3	54
42	The essential role of cAMP/Ca2+ signalling in mammalian circadian timekeeping. Biochemical Society Transactions, 2012, 40, 44-50.	1.6	69
43	Peroxiredoxins are conserved markers of circadian rhythms. Nature, 2012, 485, 459-464.	13.7	752
44	Multiple light inputs to a simple clock circuit allow complex biological rhythms. Plant Journal, 2011, 66, 375-385.	2.8	56
45	Circadian rhythms persist without transcription in a eukaryote. Nature, 2011, 469, 554-558.	13.7	460
46	Circadian clocks in human red blood cells. Nature, 2011, 469, 498-503.	13.7	688
47	Circadian Clock Parameter Measurement: Characterization of Clock Transcription Factors Using Surface Plasmon Resonance. Journal of Biological Rhythms, 2011, 26, 91-98.	1.4	12
48	Healthy clocks, healthy body, healthy mind. Trends in Cell Biology, 2010, 20, 36-44.	3.6	159
49	<i>Cry1</i> Circadian Phase <i>in vitro</i> : Wrapped Up with an E-Box. Journal of Biological Rhythms, 2009, 24, 16-24.	1.4	31
50	Circadian clocks can take a few transcriptional knocks. EMBO Journal, 2009, 28, 84-85.	3.5	4
51	Cellular Circadian Pacemaking and the Role of Cytosolic Rhythms. Current Biology, 2008, 18, R805-R815.	1.8	133
52	cAMP-Dependent Signaling as a Core Component of the Mammalian Circadian Pacemaker. Science, 2008, 320, 949-953.	6.0	381
53	Increased Coherence of Circadian Rhythms in Mature Fibroblast Cultures. Journal of Biological Rhythms, 2008, 23, 483-488.	1.4	37
54	Minireview: The Circadian Clockwork of the Suprachiasmatic Nuclei—Analysis of a Cellular Oscillator that Drives Endocrine Rhythms. Endocrinology, 2007, 148, 5624-5634.	1.4	103

#	Article	IF	CITATIONS
55	The After-Hours Mutant Reveals a Role for Fbxl3 in Determining Mammalian Circadian Period. Science, 2007, 316, 897-900.	6.0	434
56	Genetic and Molecular Analysis of the Central and Peripheral Circadian Clockwork of Mice. Cold Spring Harbor Symposia on Quantitative Biology, 2007, 72, 85-94.	2.0	52
57	Insight Into the Circadian Clock Within Rat Colonic Epithelial Cells. Gastroenterology, 2007, 133, 1240-1249.	0.6	131
58	Circadian clocks: regulators of endocrine and metabolic rhythms. Journal of Endocrinology, 2007, 195, 187-198.	1.2	418
59	Refinement of a radioreceptor binding assay for nicotinic acid adenine dinucleotide phosphate. Analytical Biochemistry, 2007, 371, 26-36.	1.1	28
60	Circadian Clocks: Timely Interference by MicroRNAs. Current Biology, 2007, 17, R760-R762.	1.8	23
61	Synchronization and Maintenance of Timekeeping in Suprachiasmatic Circadian Clock Cells by Neuropeptidergic Signaling. Current Biology, 2006, 16, 599-605.	1.8	397
62	Circadian Orchestration of the Hepatic Proteome. Current Biology, 2006, 16, 1107-1115.	1.8	506
63	Circadian timing in health and disease. Progress in Brain Research, 2006, 153, 253-269.	0.9	76
64	Circadian clocks: Neural and peripheral pacemakers that impact upon the cell division cycle. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2005, 574, 76-91.	0.4	80
65	Sperm Deliver a New Second Messenger Current Biology 2003 13 125-128	1.8	155