
Andrew R Rickard

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235915/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The MCM v3.3.1 degradation scheme for isoprene. Atmospheric Chemistry and Physics, 2015, 15, 11433-11459.	1.9	350
2	Oxidation capacity of the city air of Santiago, Chile. Atmospheric Chemistry and Physics, 2009, 9, 2257-2273.	1.9	214
3	OH Yields in the Gas-Phase Reactions of Ozone with Alkenes. Journal of Physical Chemistry A, 1999, 103, 7656-7664.	1.1	171
4	Kinetics of stabilised Criegee intermediates derived from alkene ozonolysis: reactions with SO2, H2O and decomposition under boundary layer conditions. Physical Chemistry Chemical Physics, 2015, 17, 4076-4088.	1.3	117
5	Total radical yields from tropospheric ethene ozonolysis. Physical Chemistry Chemical Physics, 2011, 13, 11002.	1.3	90
6	Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation. Atmospheric Chemistry and Physics, 2009, 9, 635-665.	1.9	88
7	Production of peroxy radicals at night via reactions of ozone and the nitrate radical in the marine boundary layer. Journal of Geophysical Research, 2001, 106, 12669-12687.	3.3	87
8	Estimation of rate coefficients and branching ratios for reactions of organic peroxy radicals for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2019, 19, 7691-7717.	1.9	70
9	Atmospheric isoprene ozonolysis: impacts of stabilised Criegee intermediate reactions with SO ₂ , H ₂ O and dimethyl sulfide. Atmospheric Chemistry and Physics, 2015, 15, 9521-9536.	1.9	62
10	Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aliphatic organic compounds for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2018, 18, 9297-9328.	1.9	48
11	The influence of orbital asymmetry on the kinetics of the gas-phase reactions of ozone with unsaturated compounds. Physical Chemistry Chemical Physics, 2000, 2, 323-328.	1.3	43
12	Aromatic Photo-oxidation, A New Source of Atmospheric Acidity. Environmental Science & Technology, 2020, 54, 7798-7806.	4.6	43
13	Insights into the Formation and Evolution of Individual Compounds in the Particulate Phase during Aromatic Photo-Oxidation. Environmental Science & amp; Technology, 2015, 49, 13168-13178.	4.6	42
14	AtChem (version 1), an open-source box model for the Master Chemical Mechanism. Geoscientific Model Development, 2020, 13, 169-183.	1.3	42
15	The atmospheric impacts of monoterpene ozonolysis on global stabilised Criegee intermediate budgets and SO ₂ oxidation: experiment, theory and modelling. Atmospheric Chemistry and Physics, 2018, 18, 6095-6120.	1.9	36
16	Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2407-2426.	1.9	33
17	A theoretical investigation of OH formation in the gas-phase ozonolysis of E-but-2-ene and Z-but-2-ene. Physical Chemistry Chemical Physics, 1999, 1, 3981-3985.	1.3	31
18	Online and offline mass spectrometric study of the impact of oxidation and ageing on glyoxal chemistry and uptake onto ammonium sulfate aerosols. Faraday Discussions, 2013, 165, 447.	1.6	30

ANDREW R RICKARD

#	Article	IF	CITATIONS
19	The CRI v2.2 reduced degradation scheme for isoprene. Atmospheric Environment, 2019, 212, 172-182.	1.9	29
20	Emissions of non-methane volatile organic compounds from combustion of domestic fuels in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 2383-2406.	1.9	29
21	Hydroxyl-radical formation in the gas-phase ozonolysis of 2-methylbut-2-ene. Geophysical Research Letters, 1998, 25, 2177-2180.	1.5	28
22	Estimation of rate coefficients and branching ratios for gas-phase reactions of OH with aromatic organic compounds for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2018, 18, 9329-9349.	1.9	28
23	In situ ozone production is highly sensitive to volatile organic compounds in Delhi, India. Atmospheric Chemistry and Physics, 2021, 21, 13609-13630.	1.9	28
24	Sources of non-methane hydrocarbons in surface air in Delhi, India. Faraday Discussions, 2021, 226, 409-431.	1.6	23
25	Key Role of NO ₃ Radicals in the Production of Isoprene Nitrates and Nitrooxyorganosulfates in Beijing. Environmental Science & Technology, 2021, 55, 842-853.	4.6	18
26	Atmospheric ethanol in London and the potential impacts of future fuel formulations. Faraday Discussions, 2016, 189, 105-120.	1.6	16
27	Trends in stabilisation of Criegee intermediates from alkene ozonolysis. Physical Chemistry Chemical Physics, 2020, 22, 13698-13706.	1.3	16
28	Estimation of rate coefficients for the reactions of O ₃ with unsaturated organic compounds for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2020, 20, 12921-12937.	1.9	15
29	Photochemistry of 2-butenedial and 4-oxo-2-pentenal under atmospheric boundary layer conditions. Physical Chemistry Chemical Physics, 2019, 21, 1160-1171.	1.3	13
30	Importance of Oxidants and Temperature in the Formation of Biogenic Organosulfates and Nitrooxy Organosulfates. ACS Earth and Space Chemistry, 2021, 5, 2291-2306.	1.2	13
31	Ozonolysis of <i>α</i> -phellandrene – PartÂ2: Compositional analysis of secondary organic aerosol highlights the role of stabilised Criegee intermediates. Atmospheric Chemistry and Physics, 2018, 18, 4673-4693.	1.9	11
32	Comprehensive organic emission profiles, secondary organic aerosol production potential, and OH reactivity of domestic fuel combustion in Delhi, India. Environmental Science Atmospheres, 2021, 1, 104-117.	0.9	11
33	Elucidating the fate of the OH-adduct in toluene oxidation under tropospheric boundary layer conditions. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7856-E7857.	3.3	7
34	Emission estimates and inventories of non-methane volatile organic compounds from anthropogenic burning sources in India. Atmospheric Environment: X, 2021, 11, 100115.	0.8	6
35	Estimation of mechanistic parameters in the gas-phase reactions of ozone with alkenes for use in automated mechanism construction. Atmospheric Chemistry and Physics, 2022, 22, 6167-6195.	1.9	5
36	Seasonality of isoprene emissions and oxidation products above the remote Amazon. Environmental Science Atmospheres, 2022, 2, 230-240.	0.9	4