Antonio Carlos B Burtoloso

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235823/publications.pdf

Version: 2024-02-01

75 papers

2,214 citations

236833 25 h-index 243529 44 g-index

91 all docs 91 docs citations

times ranked

91

2444 citing authors

#	Article	IF	Citations
1	The chemistry and biology of organic guanidine derivatives. Natural Product Reports, 2008, 25, 919.	5.2	183
2	Sulfoxonium and Sulfonium Ylides as Diazocarbonyl Equivalents in Metalâ€Catalyzed Insertion Reactions. European Journal of Organic Chemistry, 2013, 2013, 5005-5016.	1.2	156
3	Stoichiometric and irreversible cysteine-selective protein modification using carbonylacrylic reagents. Nature Communications, 2016, 7, 13128.	5.8	141
4	The chemistry and biology of organic guanidine derivatives. Natural Product Reports, 2010, 27, 1871.	5.2	108
5	Catalyst-Free Insertion of Sulfoxonium Ylides into Aryl Thiols. AÂDirect Preparation of β-Keto Thioethers. Organic Letters, 2016, 18, 3034-3037.	2.4	103
6	Catalytic Enantioselective α-Arylation of Carbonyl Compounds. Synlett, 2009, 2009, 320-327.	1.0	77
7	Chemical Synthesis of the GHIJKLMNO Ring System of Maitotoxin. Journal of the American Chemical Society, 2008, 130, 7466-7476.	6.6	73
8	\hat{l}_{\pm},\hat{l}^2 -Unsaturated Diazoketones as Useful Platforms in the Synthesis of Nitrogen Heterocycles. Accounts of Chemical Research, 2015, 48, 921-934.	7.6	67
9	Metal carbene N–H insertion of chiral α,α′-dialkyl α-diazoketones. A novel and concise method for the stereocontrolled synthesis of fully substituted azetidines. Tetrahedron Letters, 2004, 45, 3355-3358.	0.7	60
10	Coupling of Sulfoxonium Ylides with Arynes: A Direct Synthesis of Pro-Chiral Aryl Ketosulfoxonium Ylides and Its Application in the Preparation of α-Aryl Ketones. Organic Letters, 2018, 20, 7206-7211.	2.4	59
11	Conversion of levulinic acid into γ-valerolactone using Fe ₃ (CO) ₁₂ : mimicking a biorefinery setting by exploiting crude liquors from biomass acid hydrolysis. Chemical Communications, 2015, 51, 14199-14202.	2.2	58
12	Asymmetric transformations from sulfoxonium ylides. Chemical Science, 2022, 13, 1192-1209.	3.7	58
13	Enantioselective Sâ^'H Insertion Reactions of αâ€Carbonyl Sulfoxonium Ylides. Angewandte Chemie - International Edition, 2020, 59, 15554-15559.	7.2	51
14	Efficient and irreversible antibody–cysteine bioconjugation using carbonylacrylic reagents. Nature Protocols, 2019, 14, 86-99.	5.5	49
15	LED lighting as a simple, inexpensive, and sustainable alternative for Wolff rearrangements. RSC Advances, 2015, 5, 13311-13314.	1.7	47
16	î±,î±â€Alkylationâ€Halogenation and Dihalogenation of Sulfoxonium Ylides. A Direct Preparation of Geminal Difunctionalized Ketones. Chemistry - A European Journal, 2017, 23, 16980-16984.	1.7	44
17	Probing the Lignin Disassembly Pathways with Modified Catalysts Based on Cu-Doped Porous Metal Oxides. ACS Sustainable Chemistry and Engineering, 2017, 5, 3158-3169.	3.2	42
18	α-Imino Iridium Carbenes from Imidoyl Sulfoxonium Ylides: Application in the One-Step Synthesis of Indoles. Journal of Organic Chemistry, 2020, 85, 7433-7445.	1.7	42

#	Article	IF	CITATIONS
19	Preparation of \hat{l}_{\pm}, \hat{l}^2 -Unsaturated Diazoketones Employing a Hornerâ "Wadsworthâ" Emmons Reagent. Journal of Organic Chemistry, 2011, 76, 289-292.	1.7	35
20	Cooperative copper-squaramide catalysis for the enantioselective N–H insertion reaction with sulfoxonium ylides. Chemical Science, 2021, 12, 7453-7459.	3.7	34
21	A comparative study of warheads for design of cysteine protease inhibitors. Bioorganic and Medicinal Chemistry Letters, 2017, 27, 5031-5035.	1.0	32
22	Total synthesis of (\hat{a} °)-indolizidine 167B via an unusual Wolff rearrangement from an \hat{l}_{\pm} , \hat{l}^2 -unsaturated diazoketone. Tetrahedron Letters, 2012, 53, 876-878.	0.7	29
23	Silica-supported HClO ₄ promotes catalytic solvent- and metal-free Oâ€"H insertion reactions with diazo compounds. Green Chemistry, 2018, 20, 4547-4556.	4.6	28
24	Advances in the Enantioselective Metal-catalyzed N-H and O-H Insertion Reactions with Diazocarbonyl Compounds. Current Organic Synthesis, 2015, 12, 650-659.	0.7	27
25	$\hat{l}\pm,\hat{l}^2$ -Unsaturated Diazoketones as Platforms in the Asymmetric Synthesis of Hydroxylated Alkaloids. Total Synthesis of 1-Deoxy-8,8a-diepicastanospermine and 1,6-Dideoxyepicastanospermine and Formal Synthesis of Pumiliotoxin 251D. Journal of Organic Chemistry, 2012, 77, 9926-9931.	1.7	26
26	Anti-trypanosomal activity of non-peptidic nitrile-based cysteine protease inhibitors. PLoS Neglected Tropical Diseases, 2017, 11, e0005343.	1.3	26
27	A new entry to the synthesis of substituted azetidines: [2+2] cycloaddition reaction of four-membered endocyclic enamides to ketenes. Tetrahedron Letters, 2006, 47, 6377-6380.	0.7	25
28	Catalytic Friedel–Crafts Alkylation of Electron Rich Aromatic Derivatives with α-Aryl Diazoacetates Mediated by Brønsted Acids. Organic Letters, 2020, 22, 2339-2343.	2.4	25
29	Ironâ€Catalyzed Reductive Amination from Levulinic and Formic Acid Aqueous Solutions: An Approach for the Selective Production of Pyrrolidones in Biorefinery Facilities. ChemistrySelect, 2018, 3, 368-372.	0.7	24
30	Enantioselective Indole Insertion Reactions of α-Carbonyl Sulfoxonium Ylides. Organic Letters, 2021, 23, 9446-9450.	2.4	24
31	SmI2-Mediated Couplings of α-Amino Acid Derivatives. Formal Synthesis of (â^')-Pumiliotoxin 251D and (±)-Epiquinamide. Organic Letters, 2013, 15, 2434-2437.	2.4	23
32	Traditional and New methods for the Preparation of Diazocarbonyl Compounds. Anais Da Academia Brasileira De Ciencias, 2018, 90, 859-893.	0.3	23
33	Synthesis of Alkaloids: Recent Advances in the Synthesis of Phenanthroindolizidine Alkaloids. Current Topics in Medicinal Chemistry, 2013, 14, 191-199.	1.0	22
34	Divergent Roles of Urea and Phosphoric Acid Derived Catalysts in Reactions of Diazo Compounds. Synthesis, 2016, 48, 677-686.	1.2	21
35	Asymmetric synthesis of cis-2,4-disubstituted azetidin-3-ones from metal carbene chemistry. Journal of Organometallic Chemistry, 2005, 690, 5636-5646.	0.8	20
36	Leveraging the cruzain S3 subsite to increase affinity for reversible covalent inhibitors. Bioorganic Chemistry, 2018, 79, 285-292.	2.0	20

#	Article	IF	CITATIONS
37	Three-Step Synthesis of (±)-Preussin from Decanal. Journal of Organic Chemistry, 2014, 79, 6748-6753.	1.7	19
38	Total Synthesis of $(\hat{A}\pm)$ -Brussonol and $(\hat{A}\pm)$ -Komaroviquinone via a Regioselective Cross-Electrophile Coupling of Aryl Bromides and Epoxides. Organic Letters, 2019, 21, 6079-6083.	2.4	19
39	Synthesis and structure-activity relationship of nitrile-based cruzain inhibitors incorporating a trifluoroethylamine-based P2 amide replacement. Bioorganic and Medicinal Chemistry, 2019, 27, 115083.	1.4	18
40	Copper-catalyzed Nâ€"H insertion reactions from sulfoxonium ylides. Tetrahedron, 2020, 76, 131313.	1.0	18
41	Substituted Naphthols: Preparations, Applications, and Reactions. European Journal of Organic Chemistry, 2021, 2021, 741-756.	1.2	18
42	Direct Synthesis of α-Fluoro-α-Triazol-1-yl Ketones from Sulfoxonium Ylides: A One-Pot Approach. Journal of Organic Chemistry, 2021, 86, 12427-12435.	1.7	15
43	Copper(II) Acetylacetonate: An Inexpensive Multifunctional Catalyst. Synlett, 2005, 2005, 2859-2860.	1.0	14
44	Stereoselective synthesis of azetidine-derived glutamate and aspartate analogues from chiral azetidin-3-ones. Tetrahedron, 2008, 64, 9928-9936.	1.0	14
45	An epoxide ring-opening approach for a short and stereoselective synthesis of icetexane diterpenoids. Tetrahedron Letters, 2010, 51, 686-688.	0.7	13
46	Preparation of $\langle i \rangle Z \langle i \rangle - \hat{l} \pm, \hat{l}^2$ -Unsaturated Diazoketones from Aldehydes. Application in the Construction of Substituted Dihydropyridin-3-ones. Journal of Organic Chemistry, 2013, 78, 9464-9470.	1.7	13
47	Electrochemistry and UV–vis spectroscopy of synthetic thiocholine: Revisiting the electro-oxidation mechanism. Electrochimica Acta, 2013, 112, 500-504.	2.6	13
48	Hydrazone molecules as mimics for acetylcholinesterase. A new route towards disposable biosensors for pesticides?. Sensors and Actuators B: Chemical, 2013, 182, 211-216.	4.0	13
49	One-step syntheses of substituted 2-pyrrolidinones and 3-pyrrolidinones from $\hat{l}\pm,\hat{l}^2$ -unsaturated diazoketones and amines. Application in the synthesis of barmumycin. Tetrahedron, 2017, 73, 3720-3729.	1.0	13
50	Astaxanthin diferulate as a bifunctional antioxidant. Free Radical Research, 2015, 49, 102-111.	1.5	12
51	Rapid Synthesis of Bicyclic Nâ€Heterocyclic Cores from Nâ€Terminal α,βâ€Unsaturated Diazoketones. European Journal of Organic Chemistry, 2018, 2018, 2822-2830.	1.2	12
52	Six-Step Syntheses of (â^')-1-Deoxyaltronojirimycin and (+)-1-Deoxymannonojirimycin from <i>N</i> - <i>Z</i> - <i>O</i> -TBDPS- <scp>I</scp> -serinal. Journal of Organic Chemistry, 2016, 81, 10569-10575.	1.7	11
53	Precise Installation of Diazo-Tagged Side-Chains on Proteins to Enable In Vitro and In-Cell Site-Specific Labeling. Bioconjugate Chemistry, 2020, 31, 1604-1610.	1.8	10
54	Heck Arylation of Maleic Anhydrides Using Arenediazonium TetrafluoroÂborates: Synthesis of Mono- and Diarylated Maleic Anhydrides and of the ÂMarine Alkaloids Prepolycitrin A and Polycitrin A. Synlett, 2006, 2006, 3145-3149.	1.0	9

#	Article	IF	Citations
55	Synthesis of Fused Bicyclic [1,2,3]-Triazoles from Î ³ -Amino Diazoketones. ACS Omega, 2019, 4, 159-168.	1.6	9
56	Sharpless Asymmetric Dihydroxylation on \hat{l}_{\pm},\hat{l}^2 -Unsaturated Diazoketones: A New Entry for the Synthesis of Disubstituted Furanones. Synlett, 2017, 28, 1748-1752.	1.0	7
57	& amp; #945;, & amp; #946; - Unsaturated Diazoketones as Versatile Building Blocks for the Synthesis of Hydroxylated Piperidines, Indolizidines and Quinolizidines. Current Topics in Medicinal Chemistry, 2013, 13, 2099-2103.	1.0	7
58	A two-step synthesis of the bioprotective agent JP4-039 from N-Boc-l-leucinal. Tetrahedron, 2014, 70, 3291-3296.	1.0	6
59	Metal-Free Insertion Reactions of Diazo Carbonyls to Azlactones. Journal of Organic Chemistry, 2018, 83, 11399-11406.	1.7	6
60	Synthesis of Oxazinanones: Intramolecular Cyclization of Amino Acid-Derived Diazoketones via Silica-Supported HClO4 Catalysis. Frontiers in Chemistry, 2019, 7, 62.	1.8	6
61	Molecular Iodine Mediated Oxidation of Arylated αâ€Carbonyl Sulfoxonium Ylides to 1,2â€Dicarbonylâ€Containing Compounds. European Journal of Organic Chemistry, 2022, 2022, .	1.2	6
62	Direct Synthesis of Highly Substituted Cyclopentadienes and Derivatives from the Selfâ€Condensation of Renewable Ethyl Levulinate. European Journal of Organic Chemistry, 2018, 2018, 6350-6354.	1.2	5
63	Synthetic Routes Towards the Synthesis of Geminal αâ€Difunctionalized Ketones. Chemical Record, 2021, 21, 2837-2854.	2.9	5
64	Organocatalytic Enantioselective Sulfa-Michael Additions to $\hat{l}\pm,\hat{l}^2$ -Unsaturated Diazoketones. Journal of Organic Chemistry, 2022, 87, 3482-3490.	1.7	5
65	One-pot synthesis of β-O-4 lignin models via the insertion of stable 2-diazo-1,3-dicarbonyls into O–H bonds. Organic and Biomolecular Chemistry, 2020, 18, 4815-4823.	1.5	4
66	Enantioselective Sâ^'H Insertion Reactions of α arbonyl Sulfoxonium Ylides. Angewandte Chemie, 2020, 132, 15684-15689.	1.6	4
67	Synthesis of long-chain polyols from the Claisen condensation of \hat{I}^3 -valerolactone. Green Chemistry, 2019, 21, 6441-6450.	4.6	3
68	Stereoselective Synthesis of the Conformationally Constrained Glutamate Analogue, (-)-(2R,3S)-cis-2-Carboxyazetidine-3-acetic Acid, from (S)-N-Tosyl-2-phenylglycine. Synlett, 2005, 2005, 1559-1562.	1.0	2
69	Synthesis, Structure–Activity Relationships, and Parasitological Profiling of Brussonol Derivatives as New PlasmodiumÂfalciparum Inhibitors. Pharmaceuticals, 2022, 15, 814.	1.7	1
70	Metal Carbene N—H Insertion of Chiral α,α′-Dialkyl α-Diazoketones. A Novel and Concise Method for the Stereocontrolled Synthesis of Fully Substituted Azetidines ChemInform, 2004, 35, no.	0.1	0
71	Theoretical studies of the asymmetric alkylation reaction on chiral enamines. Computational and Theoretical Chemistry, 2005, 716, 103-107.	1.5	0
72	An Improved Procedure for the Preparation of [Bis(2,2,2-trifluoroethyl)phosphono]acetic Acid. Synthesis, 2010, 2010, 361-363.	1.2	0

#	Article	IF	CITATIONS
73	Synthesis of Piperidines from Z- $\hat{l}\pm$, \hat{l}^2 -Unsaturated Diazoketones. , 0, , .		O
74	A Two-Step Synthesis of the Bioprotective Agent JP4-039 from N-Boc-L-Leucinal , 0, , .		O
75	\hat{l}_{\pm}, \hat{l}^2 -Unsaturated Diazoketones in Aza-Michael Additions - Application in the synthesis of Barmumycin. , 0, , .		O