András Darcsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235504/publications.pdf

Version: 2024-02-01

471509 610901 33 614 17 24 citations h-index g-index papers 33 33 33 791 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect-Directed Discovery of Bioactive Compounds Followed by Highly Targeted Characterization, Isolation and Identification, Exemplarily Shown for <i>Solidago virgaurea</i> . Analytical Chemistry, 2016, 88, 8202-8209.	6.5	50
2	Characterization and identification of isoflavonoid glycosides in the root of Spiny restharrow (Ononis spinosa L.) by HPLC-QTOF-MS, HPLC–MS/MS and NMR. Journal of Pharmaceutical and Biomedical Analysis, 2016, 123, 74-81.	2.8	49
3	Blood-brain barrier permeability study of ginger constituents. Journal of Pharmaceutical and Biomedical Analysis, 2020, 177, 112820.	2.8	42
4	Effect-directed analysis via hyphenated high-performance thin-layer chromatography for bioanalytical profiling of sunflower leaves. Journal of Chromatography A, 2018, 1533, 213-220.	3.7	35
5	Single-isomer carboxymethyl- \hat{i}^3 -cyclodextrin as chiral resolving agent for capillary electrophoresis. Journal of Chromatography A, 2016, 1467, 445-453.	3.7	34
6	Distinction and valorization of 30 root extracts of five goldenrod (Solidago) species. Journal of Chromatography A, 2020, 1611, 460602.	3.7	31
7	Chiral recognition of dapoxetine enantiomers with methylated-gamma-cyclodextrin: A validated capillary electrophoresis method. Journal of Pharmaceutical and Biomedical Analysis, 2012, 62, 42-47.	2.8	26
8	Microstructural Distinction of Electrospun Nanofibrous Drug Delivery Systems Formulated with Different Excipients. Molecular Pharmaceutics, 2018, 15, 4214-4225.	4.6	24
9	Comparative analysis of the full set of methylated βâ€eyclodextrins as chiral selectors in capillary electrophoresis. Electrophoresis, 2019, 40, 2789-2798.	2.4	23
10	Layer chromatography-bioassays directed screening and identification of antibacterial compounds from Scotch thistle. Journal of Chromatography A, 2017, 1524, 266-272.	3.7	22
11	Three newly identified lipophilic flavonoids in Tanacetum parthenium supercritical fluid extract penetrating the Blood-Brain Barrier. Journal of Pharmaceutical and Biomedical Analysis, 2018, 149, 488-493.	2.8	22
12	Detection and structure elucidation of hydroxythiovardenafil as an adulterant in a herbal dietary supplement. Journal of Pharmaceutical and Biomedical Analysis, 2013, 74, 83-91.	2.8	21
13	Comparative evaluation of the chiral recognition potential of single-isomer sulfated beta-cyclodextrin synthesis intermediates in non-aqueous capillary electrophoresis. Journal of Chromatography A, 2016, 1467, 454-462.	3.7	20
14	Synthesis, analytical characterization and capillary electrophoretic use of the single-isomer heptakis-(6-O-sulfobutyl)-beta-cyclodextrin. Journal of Chromatography A, 2017, 1514, 127-133.	3.7	18
15	Structure elucidation of a process-related impurity of dapoxetine. Journal of Pharmaceutical and Biomedical Analysis, 2014, 96, 272-277.	2.8	17
16	Isolation of allene carotenoids from mamey. Journal of Food Composition and Analysis, 2018, 65, 1-5.	3.9	17
17	Separation and characterization of homopipecolic acid isoflavonoid ester derivatives isolated from Ononis spinosa L. root. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1091, 21-28.	2.3	17
18	A multifunctional \hat{l}^2 -cyclodextrin-conjugate photodelivering nitric oxide with fluorescence reporting. International Journal of Pharmaceutics, 2017, 531, 614-620.	5.2	15

#	Article	IF	Citations
19	Novel β-cyclodextrin–eosin conjugates. Beilstein Journal of Organic Chemistry, 2017, 13, 543-551.	2.2	14
20	Synthesis of the chiral selector heptakis(6â€ <i>O</i> â€methyl)â€Î²â€cyclodextrin by phaseâ€transfer catalysis ar hydrazineâ€mediated transferâ€hydrogenation. Electrophoresis, 2019, 40, 1941-1950.	ıd 2.4	14
21	Liquid chromatographic method for the simultaneous determination of achiral and chiral impurities of dapoxetine in approved and counterfeit products. Journal of Chromatography A, 2020, 1626, 461388.	3.7	14
22	Phytochemical analysis of <scp><i>Ononis arvensis</i>L. by liquid chromatography coupled with mass spectrometry. Journal of Mass Spectrometry, 2019, 54, 121-133.</scp>	1.6	13
23	Goldenrod Root Compounds Active against Crop Pathogenic Fungi. Journal of Agricultural and Food Chemistry, 2021, 69, 12686-12694.	5.2	13
24	New synthetic strategies for xanthene-dye-appended cyclodextrins. Beilstein Journal of Organic Chemistry, 2016, 12, 537-548.	2.2	11
25	NMR, CD and UV spectroscopic studies reveal uncommon binding modes of dapoxetine to native cyclodextrins. RSC Advances, 2016, 6, 102315-102328.	3.6	10
26	Identification and characterization of a new dapoxetine impurity by NMR: Transformation of N -oxide by Cope elimination. Journal of Pharmaceutical and Biomedical Analysis, 2017, 134, 187-194.	2.8	9
27	Supramolecular structures based on regioisomers of cinnamyl-α-cyclodextrins – new media for capillary separation techniques. Beilstein Journal of Organic Chemistry, 2016, 12, 97-109.	2.2	6
28	Optimized conversion of antiproliferative lignans pinoresinol and epipinoresinol: Their simultaneous isolation and identification by centrifugal partition chromatography and high performance liquid chromatography. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2017, 1052, 142-149.	2.3	6
29	Isolation and structural elucidation of a novel brunnein-type antioxidant \hat{l}^2 -carboline alkaloid from Cyclocybe cylindracea. Fìtoterapìâ, 2019, 137, 104180.	2.2	6
30	Enantioseparation and quantitative determination of two homologous beta amino acids found in Fabaceae plants. Journal of Chromatography A, 2022, 1675, 463089.	3.7	6
31	Qualitative and Quantitative Phytochemical Analysis of Ononis Hairy Root Cultures. Frontiers in Plant Science, 2020, 11, 622585.	3.6	5
32	Enzyme-hydrolyzed Fruit of Jurinea mollis: a Rich Source of (-)-(8R,8'R)-Arctigenin. Natural Product Communications, 2016, 11, 1459-1462.	0.5	4
33	IzoflavonoidÂglýkozidokÂbétaÂaminosavÂészterei., 2017,,.		0