List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235335/publications.pdf Version: 2024-02-01

ΩλΔΩι Ρινλς

#	Article	IF	CITATIONS
1	Unveiling the genomic potential of Pseudomonas type strains for discovering new natural products. Microbial Genomics, 2022, 8, .	1.0	6
2	Defining the Rhizobium leguminosarum Species Complex. Genes, 2021, 12, 111.	1.0	48
3	Associations Between Bark Beetles and Pseudomonas. , 2021, , 205-213.		0
4	Bacterial Fertilizers Based on Rhizobium laguerreae and Bacillus halotolerans Enhance Cichorium endivia L. Phenolic Compound and Mineral Contents and Plant Development. Foods, 2021, 10, 424.	1.9	13
5	A New Perspective of Pseudomonas—Host Interactions: Distribution and Potential Ecological Functions of the Genus Pseudomonas within the Bark Beetle Holobiont. Biology, 2021, 10, 164.	1.3	21
6	Connecting the Lab and the Field: Genome Analysis of Phyllobacterium and Rhizobium Strains and Field Performance on Two Vegetable Crops. Agronomy, 2021, 11, 1124.	1.3	10
7	Overview of the Role of Rhizobacteria in Plant Salt Stress Tolerance. Agronomy, 2021, 11, 1759.	1.3	31
8	Phylogenomic Analyses of the Genus Pseudomonas Lead to the Rearrangement of Several Species and the Definition of New Genera. Biology, 2021, 10, 782.	1.3	109
9	Identification of Canola Roots Endophytic Bacteria and Analysis of Their Potential as Biofertilizers for Canola Crops with Special Emphasis on Sporulating Bacteria. Agronomy, 2021, 11, 1796.	1.3	15
10	A Different Point of View of Plant-Bacterial Interactions: RNA-Seq Analysis of a PGP Bacterial Endophyte Colonizing Rapeseed Plants. Biology and Life Sciences Forum, 2021, 4, 90.	0.6	0
11	Mechanisms of Action of Microbial Biocontrol Agents against Botrytis cinerea. Journal of Fungi (Basel, Switzerland), 2021, 7, 1045.	1.5	37
12	Selection of the Root Endophyte Pseudomonas brassicacearum CDVBN10 as Plant Growth Promoter for Brassica napus L. Crops. Agronomy, 2020, 10, 1788.	1.3	24
13	Rhizobium laguerreae Improves Productivity and Phenolic Compound Content of Lettuce (Lactuca) Tj ETQq1 1 ().784314 1.9	rgBT_/Overloo
14	Bacteria Belonging to Pseudomonas typographi sp. nov. from the Bark Beetle Ips typographus Have Genomic Potential to Aid in the Host Ecology. Insects, 2020, 11, 593.	1.0	26
15	Analysis of the Interaction between Pisum sativum L. and Rhizobium laguerreae Strains Nodulating This Legume in Northwest Spain. Plants, 2020, 9, 1755.	1.6	7
16	Increase in phenolic compounds of <i>Coriandrum sativum</i> L. after the application of a <i>Bacillus halotolerans</i> biofertilizer. Journal of the Science of Food and Agriculture, 2020, 100, 2742-2749.	1.7	34
17	The ant Lasius niger is a new source of bacterial enzymes with biotechnological potential for bleaching dye. Scientific Reports, 2019, 9, 15217.	1.6	10
18	Legumes display common and host-specific responses to the rhizobial cellulase CelC2 during primary symbiotic infection. Scientific Reports, 2019, 9, 13907.	1.6	8

#	Article	IF	CITATIONS
19	Genome Insights into the Novel Species Microvirga brassicacearum, a Rapeseed Endophyte with Biotechnological Potential. Microorganisms, 2019, 7, 354.	1.6	30
20	Mealworm frass as a potential biofertilizer and abiotic stress tolerance-inductor in plants. Applied Soil Ecology, 2019, 142, 110-122.	2.1	92
21	Phaseolus vulgaris is nodulated by the symbiovar viciae of several genospecies of Rhizobium laguerreae complex in a Spanish region where Lens culinaris is the traditionally cultivated legume. Systematic and Applied Microbiology, 2019, 42, 240-247.	1.2	22
22	Future Perspective in Organic Farming Fertilization. , 2019, , 269-315.		8
23	Plants Probiotics as a Tool to Produce Highly Functional Fruits. Reference Series in Phytochemistry, 2019, , 1849-1861.	0.2	0
24	Análisis metagenómico de la evolución de las comunidades microbianas en alimentos sometidos a refrigeración y en condiciones de ausencia de frÃo. FarmaJournal, 2019, 4, 73-84.	0.1	0
25	Heterologous Expression of Rhizobial CelC2 Cellulase Impairs Symbiotic Signaling and Nodulation in <i>Medicago truncatula</i> . Molecular Plant-Microbe Interactions, 2018, 31, 568-575.	1.4	9
26	Probiotic activities of Rhizobium laguerreae on growth and quality of spinach. Scientific Reports, 2018, 8, 295.	1.6	50
27	Plants Probiotics as a Tool to Produce Highly Functional Fruits. Reference Series in Phytochemistry, 2018, , 1-13.	0.2	3
28	Rhizobium and Phyllobacterium bacterial inoculants increase bioactive compounds and quality of strawberries cultivated in field conditions. Food Research International, 2018, 111, 416-422.	2.9	28
29	Biofertilizers Based on Bacterial Endophytes Isolated from Cereals: Potential Solution to Enhance These Crops. , 2018, , 175-203.		5
30	Discovery of Phloeophagus Beetles as a Source of Pseudomonas Strains That Produce Potentially New Bioactive Substances and Description of Pseudomonas bohemica sp. nov Frontiers in Microbiology, 2018, 9, 913.	1.5	35
31	Mesorhizobium bacterial strains isolated from the legume Lotus corniculatus are an alternative source for the production of polyhydroxyalkanoates (PHAs) to obtain bioplastics. Environmental Science and Pollution Research, 2017, 24, 17436-17445.	2.7	5
32	Current Status of the Taxonomy of Bacteria Able to Establish Nitrogen-Fixing Legume Symbiosis. , 2017, , 1-43.		9
33	Bacterial Probiotics: A Truly Green Revolution. , 2017, , 131-162.		14
34	Culturable bacterial diversity from the chestnut (Castanea sativa Mill.) phyllosphere and antagonism against the fungi causing the chestnut blight and ink diseases. AIMS Microbiology, 2017, 3, 293-314.	1.0	11
35	Plant probiotic bacteria enhance the quality of fruit and horticultural crops. AIMS Microbiology, 2017, 3, 483-501.	1.0	40
36	Bacillus terrae sp. nov. isolated from Cistus ladanifer rhizosphere soil. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 1478-1481.	0.8	12

#	Article	IF	CITATIONS
37	Mesorhizobium helmanticense sp. nov., isolated from Lotus corniculatus nodules. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2301-2305.	0.8	21
38	Rhizobium zeae sp. nov., isolated from maize (Zea mays L.) roots. International Journal of Systematic and Evolutionary Microbiology, 2017, 67, 2306-2311.	0.8	22
39	Improvement of saffron production using Curtobacterium herbarum as a bioinoculant under greenhouse conditions. AIMS Microbiology, 2017, 3, 354-364.	1.0	18
40	Analysis and effect of the use of biofertilizers on Trifolium rubens L., a preferential attention species in Castile and Leon, Spain, with the aim of increasing the plants conservation status. AIMS Microbiology, 2017, 3, 733-746.	1.0	7
41	Rhizobium Symbiotic Enzyme Cellulase CelC2: Properties and Applications. , 2016, , 81-89.		2
42	Rhizobial Biofertilizers for Ornamental Plants. , 2016, , 13-21.		3
43	Rhizobium as Potential Biofertilizer of Eruca Sativa. , 2016, , 213-220.		5
44	Analysis of the PGPB Potential of Bacterial Endophytes Associated with Maize. , 2016, , 23-35.		5
45	Effective Colonization of Spinach Root Surface by Rhizobium. , 2016, , 109-122.		8
46	Plants Probiotics as a Tool to Produce Highly Functional Fruits: The Case of Phyllobacterium and Vitamin C in Strawberries. PLoS ONE, 2015, 10, e0122281.	1.1	106
47	Rhizobium cellulosilyticum as a co-inoculant enhances Phaseolus vulgaris grain yield under greenhouse conditions. Symbiosis, 2015, 67, 135-141.	1.2	11
48	Rhizobium as plant probiotic for strawberry production under microcosm conditions. Symbiosis, 2015, 67, 25-32.	1.2	18
49	The high diversity of Lotus corniculatus endosymbionts in soils of northwest Spain. Symbiosis, 2015, 67, 11-20.	1.2	16
50	Revision of the taxonomic status of the species Rhizobium lupini and reclassification as Bradyrhizobium lupini comb. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1213-1219.	0.8	52
51	Cicer canariense, an endemic legume to the Canary Islands, is nodulated in mainland Spain by fast-growing strains from symbiovar trifolii phylogenetically related to Rhizobium leguminosarum. Systematic and Applied Microbiology, 2015, 38, 346-350.	1.2	8
52	Revision of the taxonomic status of type strains of Mesorhizobium loti and reclassification of strain USDA 3471T as the type strain of Mesorhizobium erdmanii sp. nov. and ATCC 33669T as the type strain of Mesorhizobium jarvisii sp. nov International Journal of Systematic and Evolutionary Microbiology, 2015, 65, 1703-1708.	0.8	47
53	Biotechnological applications of bacterial cellulases. AIMS Bioengineering, 2015, 2, 163-182.	0.6	50
54	Role of bacterial biofertilizers in agriculture and forestry. AIMS Bioengineering, 2015, 2, 183-205.	0.6	222

#	Article	IF	CITATIONS
55	Calcofluor white, an Alternative to Propidium Iodide for Plant Tissues Staining in Studies of Root Colonization by Fluorescent-tagged Rhizobia. Journal of Advances in Biology & Biotechnology, 2015, 2, 65-70.	0.2	9
56	Fontibacillus phaseoli sp. nov. isolated from Phaseolus vulgaris nodules. Antonie Van Leeuwenhoek, 2014, 105, 23-28.	0.7	14
57	Evaluation of seven housekeeping genes for multilocus sequence analysis of the genus Mesorhizobium: Resolving the taxonomic affiliation of the Cicer canariense rhizobia. Systematic and Applied Microbiology, 2014, 37, 553-559.	1.2	22
58	Pseudomonas helmanticensis sp. nov., isolated from forest soil. International Journal of Systematic and Evolutionary Microbiology, 2014, 64, 2338-2345.	0.8	42
59	Plums (Prunus domestica L.) are a good source of yeasts producing organic acids of industrial interest from glycerol. Food Chemistry, 2013, 139, 31-34.	4.2	8
60	MALDI-TOF mass spectrometry as a tool for differentiation of Bradyrhizobium species: Application to the identification of Lupinus nodulating strains. Systematic and Applied Microbiology, 2013, 36, 565-571.	1.2	21
61	Use of <i>Rhizobium leguminosarum</i> as a potential biofertilizer for <i>Lactuca sativa</i> and <i>Daucus carota</i> crops. Journal of Plant Nutrition and Soil Science, 2013, 176, 876-882.	1.1	99
62	Phyllobacterium endophyticum sp. nov., isolated from nodules of Phaseolus vulgaris. International Journal of Systematic and Evolutionary Microbiology, 2013, 63, 821-826.	0.8	58
63	Herbaspirillum canariense sp. nov., Herbaspirillum aurantiacum sp. nov. and Herbaspirillum soli sp. nov., isolated from volcanic mountain soil, and emended description of the genus Herbaspirillum. International Journal of Systematic and Evolutionary Microbiology, 2012, 62, 1300-1306.	0.8	34
64	Rhizobium Promotes Non-Legumes Growth and Quality in Several Production Steps: Towards a Biofertilization of Edible Raw Vegetables Healthy for Humans. PLoS ONE, 2012, 7, e38122.	1.1	155
65	The celC gene, a new phylogenetic marker useful for taxonomic studies in Rhizobium. Systematic and Applied Microbiology, 2011, 34, 393-399.	1.2	13
66	Characterization of root-nodulating bacteria associated to Prosopis farcta growing in the arid regions of Tunisia. Archives of Microbiology, 2011, 193, 385-397.	1.0	20
67	MALDI-TOF Mass Spectrometry Is a Fast and Reliable Platform for Identification and Ecological Studies of Species from Family Rhizobiaceae. PLoS ONE, 2011, 6, e20223.	1.1	94
68	Strains nodulating Lupinus albus on different continents belong to several new chromosomal and symbiotic lineages within Bradyrhizobium. Antonie Van Leeuwenhoek, 2010, 97, 363-376.	0.7	48
69	Analysis of core genes supports the reclassification of strains Agrobacterium radiobacter K84 and Agrobacterium tumefaciens AKE10 into the species Rhizobium rhizogenes. Systematic and Applied Microbiology, 2010, 33, 247-251.	1.2	48
70	<i>Phaseolus vulgaris</i> is nodulated in northern Spain by <i>Rhizobium leguminosarum</i> strains harboring two <i>nodC</i> alleles present in American <i>Rhizobium etli</i> strains: biogeographical and evolutionary implications. Canadian Journal of Microbiology, 2010, 56, 657-666.	0.8	52
71	Bacteria Involved in Nitrogen-Fixing Legume Symbiosis: Current Taxonomic Perspective. , 2010, , 1-25.		11
72	Bradyrhizobium pachyrhizi sp. nov. and Bradyrhizobium jicamae sp. nov., isolated from effective nodules of Pachyrhizus erosus. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 1929-1934.	0.8	127

#	Article	IF	CITATIONS
73	Rhizobia from Lanzarote, the Canary Islands, That Nodulate <i>Phaseolus vulgaris</i> Have Characteristics in Common with <i>Sinorhizobium meliloti</i> Isolates from Mainland Spain. Applied and Environmental Microbiology, 2009, 75, 2354-2359.	1.4	40
74	Multilocus sequence analysis of the genus Bradyrhizobium. Systematic and Applied Microbiology, 2009, 32, 101-110.	1.2	204
75	Acinetobacter strains IH9 and OCI1, two rhizospheric phosphate solubilizing isolates able to promote plant growth, constitute a new genomovar of Acinetobacter calcoaceticus. Systematic and Applied Microbiology, 2009, 32, 334-341.	1.2	20
76	Taxonomy of Bacteria Nodulating Legumes. Microbiology Insights, 2009, 2, MBI.S3137.	0.9	46
77	Genetic diversity of endophytic bacteria which could be find in the apoplastic sap of the medullary parenchym of the stem of healthy sugarcane plants. Journal of Basic Microbiology, 2008, 48, 118-124.	1.8	67
78	Stable low molecular weight RNA profiling showed variations within Sinorhizobium meliloti and Sinorhizobium medicae nodulating different legumes from the alfalfa cross-inoculation group. FEMS Microbiology Letters, 2008, 282, 273-281.	0.7	10
79	Chickpea rhizobia symbiosis genes are highly conserved across multiple Mesorhizobium species. FEMS Microbiology Ecology, 2008, 66, 391-400.	1.3	76
80	Revision of the taxonomic status of the species Rhizobium leguminosarum (Frank 1879) Frank 1889AL, Rhizobium phaseoli Dangeard 1926AL and Rhizobium trifolii Dangeard 1926AL. R. trifolii is a later synonym of R. leguminosarum. Reclassification of the strain R. leguminosarum DSM 30132 (=NCIMB) Tj ETQq	0 0 00rg8T /(Ovensteack 10 T
81	2008, 58, 2484-2490. Cohnella phaseoli sp. nov., isolated from root nodules of Phaseolus coccineus in Spain, and emended description of the genus Cohnella. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1855-1859.	0.8	67
82	Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 2560-2564.	0.8	29
83	Saccharibacillus sacchari gen. nov., sp. nov., isolated from sugar cane. International Journal of Systematic and Evolutionary Microbiology, 2008, 58, 1850-1854.	0.8	35
84	Alcanivorax balearicus sp. nov., isolated from Lake Martel. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1331-1335.	0.8	35
85	Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 784-788.	0.8	138
86	Reclassification of Pseudomonas aurantiaca as a synonym of Pseudomonas chlororaphis and proposal of three subspecies, P. chlororaphis subsp. chlororaphis subsp. nov., P. chlororaphis subsp. aureofaciens subsp. nov., comb. nov. and P. chlororaphis subsp. aurantiaca subsp. nov., comb. nov International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 1286-1290.	0.8	99
87	Characterization of xylanolytic bacteria present in the bract phyllosphere of the date palm Phoenix dactylifera. Letters in Applied Microbiology, 2007, 44, 181-187.	1.0	97
88	Strains of Mesorhizobium amorphae and Mesorhizobium tianshanense, carrying symbiotic genes of common chickpea endosymbiotic species, constitute a novel biovar (ciceri) capable of nodulating Cicer arietinum. Letters in Applied Microbiology, 2007, 44, 412-418.	1.0	92
89	Genetic characterization of fast-growing rhizobia able to nodulate <i>Prosopis alba</i> in North Spain. FEMS Microbiology Letters, 2007, 277, 210-216.	0.7	40
90	Rhizobium cellulosilyticum sp. nov., isolated from sawdust of Populus alba. International Journal of Systematic and Evolutionary Microbiology, 2007, 57, 844-848.	0.8	80

#	Article	IF	CITATIONS
01	Differential effects of coinoculations with Pseudomonas jessenii PSO6 (a phosphate-solubilizing) Tj ETQq1 1 0.784	1314 rgBT	/Overlock
91	greenhouse and field conditions. , 2007, , 43-50.		17
92	Acetobacter oeni sp. nov., isolated from spoiled red wine. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 21-24.	0.8	45
	Differential effects of coinoculations with Pseudomonas jessenii PS06 (a phosphate-solubilizing) Tj ETQq1 1 0.784	1314 rgBT	/Overlock
93	greenhouse and field conditions. Plant and Soil, 2006, 287, 43-50.	1.8	102
94	Biodiversity of populations of phosphate solubilizing rhizobia that nodulates chickpea in different Spanish soils. Plant and Soil, 2006, 287, 23-33.	1.8	104
95	A new approach for separating low-molecular-weight RNA molecules by staircase electrophoresis in non-sequencing gels. Electrophoresis, 2006, 27, 1732-1738.	1.3	1
96	Photobacterium halotolerans sp. nov., isolated from Lake Martel in Spain. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 1067-1071.	0.8	37
97	Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera. International Journal of Systematic and Evolutionary Microbiology, 2006, 56, 2777-2781.	0.8	46
98	The Coexistence of Symbiosis and Pathogenicity-Determining Genes in Rhizobium rhizogenes Strains Enables Them to Induce Nodules and Tumors or Hairy Roots in Plants. Molecular Plant-Microbe Interactions, 2005, 18, 1325-1332.	1.4	71
99	Application of horizontal staircase electrophoresis in agarose minigels to the random intergenic spacer analysis of clinical samples. Electrophoresis, 2005, 26, 4402-4410.	1.3	13
100	Reclassification of Agrobacterium ferrugineum LMG 128 as Hoeflea marina gen. nov., sp. nov International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1163-1166.	0.8	56
101	Martelella mediterranea gen. nov., sp. nov., a novel α-proteobacterium isolated from a subterranean saline lake. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 955-959.	0.8	46
102	Paenibacillus rhizosphaerae sp. nov., isolated from the rhizosphere of Cicer arietinum. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1305-1309.	0.8	28
103	Pseudomonas argentinensis sp. nov., a novel yellow pigment-producing bacterial species, isolated from rhizospheric soil in Córdoba, Argentina. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1107-1112.	0.8	43
104	Phyllobacterium trifolii sp. nov., nodulating Trifolium and Lupinus in Spanish soils. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 1985-1989.	0.8	143
105	Paenibacillus xylanilyticus sp. nov., an airborne xylanolytic bacterium. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 405-408.	0.8	65
106	Nodulation of Lupinus albus by Strains of Ochrobactrum lupini sp. nov. Applied and Environmental Microbiology, 2005, 71, 1318-1327.	1.4	219
107	Terrabacter terrae sp. nov., a novel actinomycete isolated from soil in Spain. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 2491-2495.	0.8	41
108	Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera. International Journal of Systematic and Evolutionary Microbiology, 2005, 55, 743-746.	0.8	54

#	Article	IF	CITATIONS
109	Xylanibacterium ulmi gen. nov., sp. nov., a novel xylanolytic member of the family Promicromonosporaceae. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 557-561.	0.8	38
110	Bradyrhizobium betae sp. nov., isolated from roots of Beta vulgaris affected by tumour-like deformations. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1271-1275.	0.8	115
111	Pseudomonas lutea sp. nov., a novel phosphate-solubilizing bacterium isolated from the rhizosphere of grasses. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 847-850.	0.8	59
112	Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 59-64.	0.8	65
113	Cellulomonas xylanilytica sp. nov., a cellulolytic and xylanolytic bacterium isolated from a decayed elm tree. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 533-536.	0.8	43
114	Agromyces ulmi sp. nov., a xylanolytic bacterium isolated from Ulmus nigra in Spain. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1987-1990.	0.8	40
115	Mycobacterium psychrotolerans sp. nov., isolated from pond water near a uranium mine. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 1459-1463.	0.8	29
116	Phenotypic and Genotypic Characterization of Rhizobia from Diverse Geographical Origin that Nodulate Pachyrhizus species. Systematic and Applied Microbiology, 2004, 27, 737-745.	1.2	21
117	Microbacterium ulmi sp. nov., a xylanolytic, phosphate-solubilizing bacterium isolated from sawdust of Ulmus nigra. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 513-517.	0.8	32
118	Sphingomonas phyllosphaerae sp. nov., from the phyllosphere of Acacia caven in Argentina. International Journal of Systematic and Evolutionary Microbiology, 2004, 54, 2147-2150.	0.8	44
119	Identification of microorganisms by PCR amplification and sequencing of a universal amplified ribosomal region present in both prokaryotes and eukaryotes. Journal of Microbiological Methods, 2004, 56, 413-426.	0.7	37
120	Genomic fingerprinting of Frankia strains by PCR-based techniques. Assessment of a primer based on the sequence of 16S rRNA gene of Escherichia coli. Plant and Soil, 2003, 254, 115-123.	1.8	6
121	Description of Devosia neptuniae sp. nov. that Nodulates and Fixes Nitrogen in Symbiosis with Neptunia natans, an Aquatic Legume from India. Systematic and Applied Microbiology, 2003, 26, 47-53.	1.2	170
122	Genetic Diversity of Bradyrhizobial Populations from Diverse Geographic Origins that Nodulate Lupinus spp. and Ornithopus spp Systematic and Applied Microbiology, 2003, 26, 611-623.	1.2	69
123	Pseudomonas rhizosphaerae sp. nov., a novel species that actively solubilizes phosphate in vitro. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 2067-2072.	0.8	90
124	Xylanimonas cellulosilytica gen. nov., sp. nov., a xylanolytic bacterium isolated from a decayed tree (Ulmus nigra). International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 99-103.	0.8	88
125	Genomic fingerprinting of Frankia strains by PCR-based techniques. Assessment of a primer based on the sequence of 16S rRNA gene of Escherichia coli. , 2003, , 115-123.		0
126	A New Species of <i>Devosia</i> That Forms a Unique Nitrogen-Fixing Root-Nodule Symbiosis with the Aquatic Legume <i>Neptunia natans</i> (L.f.) Druce. Applied and Environmental Microbiology, 2002, 68, 5217-5222.	1.4	277

#	Article	IF	CITATIONS
127	Title is missing!. European Journal of Plant Pathology, 2002, 108, 179-184.	0.8	42
128	An effective, rapid and simple method for total RNA extraction from bacteria and yeast. Journal of Microbiological Methods, 2001, 47, 59-63.	0.7	42
129	A two primers random amplified polymorphic DNA procedure to obtain polymerase chain reaction fingerprints of bacterial species. Electrophoresis, 2001, 22, 1086-1089.	1.3	86