M Carmen Arenas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235102/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Prepulse Inhibition and Vulnerability to Cocaine Addiction. Neuromethods, 2022, , 47-84.	0.2	0
2	Prepulse inhibition can predict the motivational effects of cocaine in female mice exposed to maternal separation. Behavioural Brain Research, 2022, 416, 113545.	1.2	3
3	Gender Differences in Dual Diagnoses Associated with Cannabis Use: A Review. Brain Sciences, 2022, 12, 388.	1.1	8
4	Sex differences in behavioral traits related with high sensitivity to the reinforcing effects of cocaine. Behavioural Brain Research, 2021, 414, 113505.	1.2	4
5	El modulador alostérico negativo de los mGluR5, MPEP, potencia la reinstauración de la preferencia condicionada inducida con priming de cocaÃna. Revista De Psicologia De La Salud, 2020, 32, 193.	0.2	1
6	Novelty Seeking. , 2020, , 3264-3267.		0
7	Prepulse Inhibition of the Startle Reflex as a Predictor of Vulnerability to Develop Locomotor Sensitization to Cocaine. Frontiers in Behavioral Neuroscience, 2019, 13, 296.	1.0	5
8	Baseline prepulse inhibition of the startle reflex predicts the sensitivity to the conditioned rewarding effects of cocaine in male and female mice. Psychopharmacology, 2018, 235, 2651-2663.	1.5	10
9	Adolescent Exposure to the Synthetic Cannabinoid WIN 55212-2 Modifies Cocaine Withdrawal Symptoms in Adult Mice. International Journal of Molecular Sciences, 2017, 18, 1326.	1.8	14
10	Influence of the Novelty-Seeking Endophenotype on the Rewarding Effects of Psychostimulant Drugs in Animal Models. Current Neuropharmacology, 2016, 14, 87-100.	1.4	25
11	Topiramate increases the rewarding properties of cocaine in young-adult mice limiting its clinical usefulness. Psychopharmacology, 2016, 233, 3849-3859.	1.5	6
12	Social defeat in adolescent mice increases vulnerability to alcohol consumption. Addiction Biology, 2016, 21, 87-97.	1.4	55
13	Novelty Seeking. , 2016, , 1-4.		2
14	The novelty-seeking phenotype modulates the long-lasting effects of adolescent MDMA exposure. Physiology and Behavior, 2015, 141, 190-198.	1.0	13
15	Role of CB2 receptors in social and aggressive behavior in male mice. Psychopharmacology, 2015, 232, 3019-3031.	1.5	31
16	Sex differences in the long-lasting consequences of adolescent ethanol exposure for the rewarding effects of cocaine in mice. Psychopharmacology, 2015, 232, 2995-3007.	1.5	18
17	Higher sensitivity to the conditioned rewarding effects of cocaine and MDMA in High-Novelty-Seekers mice exposed to a cocaine binge during adolescence. Psychopharmacology, 2015, 232, 101-113.	1.5	26
18	Influence of trait anxiety on the effects of acute stress on learning and retention of the passive avoidance task in male and female mice. Behavioural Processes, 2014, 105, 6-14.	0.5	16

M CARMEN ARENAS

#	Article	IF	CITATIONS
19	Capacity of novelty-induced locomotor activity and the hole-board test to predict sensitivity to the conditioned rewarding effects of cocaine. Physiology and Behavior, 2014, 133, 152-160.	1.0	41
20	High novelty-seeking predicts greater sensitivity to the conditioned rewarding effects of cocaine. Pharmacology Biochemistry and Behavior, 2012, 102, 124-132.	1.3	56
21	Antidepressant drugs and memory: Insights from animal studies. European Neuropsychopharmacology, 2008, 18, 235-248.	0.3	43
22	Are the effects of the antidepressants amitriptyline, maprotiline, and fluoxetine on inhibitory avoidance state-dependent?. Behavioural Brain Research, 2006, 166, 150-158.	1.2	18
23	Acute effects of maprotiline on learning, anxiety, activity and analgesia in male and female mice. Acta Neurobiologiae Experimentalis, 2006, 66, 23-31.	0.4	4
24	Amitriptyline administered after consolidation of inhibitory avoidance does not affect memory retrieval. Psicothema, 2006, 18, 514-8.	0.7	3
25	Piracetam counteracts the effects of amitriptyline on inhibitory avoidance in CD1 mice. Behavioural Brain Research, 2005, 159, 235-242.	1.2	16
26	Chronic administration of fluoxetine impairs inhibitory avoidance in male but not female mice. Behavioural Brain Research, 2002, 136, 483-488.	1.2	46
27	Effects of acute amitriptyline administration on memory, anxiety and activity in male and female mice. Neuroscience Research Communications, 2002, 31, 135-144.	0.2	11
28	Acute effects of fluoxetine on inhibitory avoidance consolidation in male and female OF1 mice. Neuroscience Research Communications, 2001, 28, 123-130.	0.2	10
29	Effects of acute and chronic maprotiline administration on inhibitory avoidance in male mice. Behavioural Brain Research, 2000, 109, 1-7.	1.2	19
30	Predicting how equipotent doses of chlorpromazine, haloperidol, sulpiride, raclopride and clozapine reduce locomotor activity in mice. European Neuropsychopharmacology, 2000, 10, 159-164.	0.3	49
31	Dose Dependency of Sex Differences in the Effects of Repeated Haloperidol Administration in Avoidance Conditioning in Mice. Pharmacology Biochemistry and Behavior, 1999, 62, 703-709.	1.3	7
32	Sex Differences in the Effects of Neuroleptics on Escape-Avoidance Behavior in Mice A Review. Pharmacology Biochemistry and Behavior, 1999, 64, 813-820.	1.3	21
33	Gender differences in the effects of haloperidol on avoidance conditioning in mice. Pharmacology Biochemistry and Behavior, 1995, 51, 601-609.	1.3	9
34	Gender differences in escape-avoidance behavior of mice after haloperidol administration. Pharmacology Biochemistry and Behavior, 1993, 44, 233-236.	1.3	11