Dorothy P Schafer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8235076/publications.pdf

Version: 2024-02-01

27 papers 6,742 citations

304602 22 h-index 26 g-index

33 all docs 33 docs citations

33 times ranked 8691 citing authors

#	Article	IF	Citations
1	Spatial transcriptomic reconstruction of the mouse olfactory glomerular map suggests principles of odor processing. Nature Neuroscience, 2022, 25, 484-492.	7.1	27
2	Whole-genome sequencing reveals that variants in the Interleukin 18 Receptor Accessory Protein 3′UTR protect against ALS. Nature Neuroscience, 2022, 25, 433-445.	7.1	16
3	<scp>CPEB1</scp> regulates the inflammatory immune response, phagocytosis, and alternative polyadenylation in microglia. Glia, 2022, 70, 1850-1863.	2.5	O
4	Diversity and Function of Glial Cell Types in Multiple Sclerosis. Trends in Immunology, 2021, 42, 228-247.	2.9	41
5	Mechanisms governing activity-dependent synaptic pruning in the developing mammalian CNS. Nature Reviews Neuroscience, 2021, 22, 657-673.	4.9	149
6	A lymphocyte–microglia–astrocyte axis in chronic active multiple sclerosis. Nature, 2021, 597, 709-714.	13.7	307
7	IL-6 boosts synaptogenesis STAT!. Immunity, 2021, 54, 2444-2446.	6.6	2
8	Targeted Complement Inhibition at Synapses Prevents Microglial Synaptic Engulfment and Synapse Loss in Demyelinating Disease. Immunity, 2020, 52, 167-182.e7.	6.6	244
9	Chronic alcohol-induced neuroinflammation involves CCR2/5-dependent peripheral macrophage infiltration and microglia alterations. Journal of Neuroinflammation, 2020, 17, 296.	3.1	32
10	A Developmental Analysis of Juxtavascular Microglia Dynamics and Interactions with the Vasculature. Journal of Neuroscience, 2020, 40, 6503-6521.	1.7	82
11	Neuronal vulnerability and multilineage diversity in multiple sclerosis. Nature, 2019, 573, 75-82.	13.7	385
12	Sensory lesioning induces microglial synapse elimination via ADAM10 and fractalkine signaling. Nature Neuroscience, 2019, 22, 1075-1088.	7.1	207
13	Transforming growth factorâ€beta renders ageing microglia inhibitory to oligodendrocyte generation by CNS progenitors. Glia, 2019, 67, 1374-1384.	2.5	32
14	Complement Targets Newborn Retinal Ganglion Cells for Phagocytic Elimination by Microglia. Journal of Neuroscience, 2019, 39, 2025-2040.	1.7	78
15	Roles of microglia in nervous system development, plasticity, and disease. Developmental Neurobiology, 2018, 78, 559-560.	1.5	38
16	A microglia-cytokine axis to modulate synaptic connectivity and function. Current Opinion in Neurobiology, 2017, 47, 138-145.	2.0	79
17	Microglia: Architects of the Developing Nervous System. Trends in Cell Biology, 2016, 26, 587-597.	3.6	264
18	Microglia contribute to circuit defects in Mecp2 null mice independent of microglia-specific loss of Mecp2 expression. ELife, 2016, 5, .	2.8	117

#	Article	IF	Citations
19	Microglia Function in Central Nervous System Development and Plasticity. Cold Spring Harbor Perspectives in Biology, 2015, 7, a020545.	2.3	264
20	Brains, Blood, and Guts: MeCP2 Regulates Microglia, Monocytes, and Peripheral Macrophages. Immunity, 2015, 42, 600-602.	6.6	14
21	Neuroinflammation: Ways in Which the Immune System Affects the Brain. Neurotherapeutics, 2015, 12, 896-909.	2.1	170
22	Removable cranial windows for long-term imaging in awake mice. Nature Protocols, 2014, 9, 2515-2538.	5 . 5	336
23	An Engulfment Assay: A Protocol to Assess Interactions Between CNS Phagocytes and Neurons. Journal of Visualized Experiments, 2014, , .	0.2	90
24	The "quadâ€partite―synapse: Microgliaâ€synapse interactions in the developing and mature CNS. Glia, 2013 61, 24-36.	'2.5	458
25	Phagocytic glial cells: sculpting synaptic circuits in the developing nervous system. Current Opinion in Neurobiology, 2013, 23, 1034-1040.	2.0	153
26	Microglia Sculpt Postnatal Neural Circuits in an Activity and Complement-Dependent Manner. Neuron, 2012, 74, 691-705.	3.8	3,040
27	Synapse elimination during development and disease: immune molecules take centre stage. Biochemical Society Transactions, 2010, 38, 476-481.	1.6	113