Priyanka Mondal

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8234733/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Development of high performance pervaporation desalination membranes: A brief review. Chemical Engineering Research and Design, 2022, 159, 1092-1104.	2.7	18
2	Removal of cadmium by in-situ Cu nanoparticle enhanced ceramic-supported-polymeric composite NF membrane. Materials Today: Proceedings, 2021, 47, 1496-1499.	0.9	4
3	Electron Microscopy: An Important Tool for Preparation and Characterization of Asymmetric Ceramic-Polymer Composite Nanofiltration Membrane. Springer Proceedings in Materials, 2021, , 3-11.	0.1	0
4	Kinetics and mechanism of arsenic removal using sulfide-modified nanoscale zerovalent iron. Chemical Engineering Journal, 2021, 412, 128667.	6.6	57
5	Removal of heavy metals by surface tailored copper ion enhanced ceramic-supported-polymeric composite nanofiltration membrane. Journal of Environmental Chemical Engineering, 2021, 9, 106368.	3.3	14
6	Removal of As(V), Cr(VI) and Cu(II) using novel amine functionalized composite nanofiltration membranes fabricated on ceramic tubular substrate. Journal of Hazardous Materials, 2020, 399, 122841.	6.5	49
7	Arsenic in groundwater of West Bengal, India: A review of human health risks and assessment of possible intervention options. Science of the Total Environment, 2018, 612, 148-169.	3.9	214
8	High pressure ultrafiltration CuO/hydroxyethyl cellulose composite ceramic membrane for separation of Cr (VI) and Pb (II) from contaminated water. Chemical Engineering Journal, 2018, 336, 570-578.	6.6	96
9	Preparation of ceramic ultrafiltration membrane using green synthesized CuO nanoparticles for chromium (VI) removal and optimization by response surface methodology. Journal of Cleaner Production, 2018, 203, 511-520.	4.6	58
10	Synthesis of bentonite clay based hydroxyapatite nanocomposites cross-linked by glutaraldehyde and optimization by response surface methodology for lead removal from aqueous solution. RSC Advances, 2015, 5, 100838-100848.	1.7	31
11	Phosphate pre-concentration from municipal wastewater by selectrodialysis: Effect of competing components. Separation and Purification Technology, 2015, 141, 38-47.	3.9	58
12	Simultaneous regeneration of inorganic acid and base from a metal washing step wastewater by bipolar membrane electrodialysis after pretreatment by crystallization in a fluidized pellet reactor. Journal of Membrane Science, 2015, 473, 118-127.	4.1	64
13	P-recovery as calcium phosphate from wastewater using an integrated selectrodialysis/crystallization process. Journal of Cleaner Production, 2014, 77, 140-151.	4.6	121
14	Effect of physico-chemical parameters on inorganic arsenic removal from aqueous solution using a forward osmosis membrane. Journal of Environmental Chemical Engineering, 2014, 2, 1309-1316.	3.3	20
15	Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chemical Engineering Journal, 2014, 243, 14-23.	6.6	302
16	Removal of As(V) from simulated groundwater using forward osmosis: Effect of competing and coexisting solutes. Desalination, 2014, 348, 33-38.	4.0	41
17	Behavior of As(V) with ZVI–H ₂ O System and the Reduction to As(0). Journal of Physical Chemistry C, 2014, 118, 21614-21621.	1.5	26
18	Arsenic mobilization in the aquifers of three physiographic settings of West Bengal, India: Understanding geogenic and anthropogenic influences. Journal of Hazardous Materials, 2013, 262, 915-923.	6.5	70

#	Article	IF	CITATIONS
19	Remediation of inorganic arsenic in groundwater for safe water supply: A critical assessment of technological solutions. Chemosphere, 2013, 92, 157-170.	4.2	270