Bernard Meunier

List of Publications by Citations

Source: https://exaly.com/author-pdf/8234660/bernard-meunier-publications-by-citations.pdf

Version: 2024-04-27

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

68 18,583 125 320 h-index g-index citations papers 6.85 6.7 19,512 342 avg, IF L-index ext. citations ext. papers

#	Paper	IF	Citations
320	Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. <i>Chemical Reviews</i> , 1992 , 92, 1411-1456	68.1	1790
319	Mechanism of oxidation reactions catalyzed by cytochrome p450 enzymes. <i>Chemical Reviews</i> , 2004 , 104, 3947-80	68.1	1774
318	Hybrid molecules with a dual mode of action: dream or reality?. <i>Accounts of Chemical Research</i> , 2008 , 41, 69-77	24.3	652
317	100 Years of Baeyer Villiger Oxidations. European Journal of Organic Chemistry, 1999 , 1999, 737-750	3.2	434
316	CarbonHydrogen Bonds of DNA Sugar Units as Targets for Chemical Nucleases and Drugs. <i>Angewandte Chemie International Edition in English</i> , 1995 , 34, 746-769		371
315	Potassium monopersulfate and a water-soluble manganese porphyrin complex, [Mn(TMPyP)](OAc)5, as an efficient reagent for the oxidative cleavage of DNA. <i>Biochemistry</i> , 1989 , 28, 7268-75	3.2	286
314	DNA And RNA Cleavage by Metal Complexes. <i>Advances in Inorganic Chemistry</i> , 1998 , 251-312	2.1	284
313	Efficient oxidative dechlorination and aromatic ring cleavage of chlorinated phenols catalyzed by iron sulfophthalocyanine. <i>Science</i> , 1995 , 268, 1163-6	33.3	281
312	From mechanistic studies on artemisinin derivatives to new modular antimalarial drugs. <i>Accounts of Chemical Research</i> , 2002 , 35, 167-74	24.3	252
311	Oxidation of Pollutants Catalyzed by Metallophthalocyanines. <i>Accounts of Chemical Research</i> , 1997 , 30, 470-476	24.3	221
310	Sodium hypochlorite: a convenient oxygen source for olefin epoxidation catalyzed by (porphyrinato)manganese complexes. <i>Journal of the American Chemical Society</i> , 1984 , 106, 6668-6676	16.4	204
309	Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts. <i>Inorganic Chemistry</i> , 1996 , 35, 387-396	5.1	193
308	Possible modes of action of the artemisinin-type compounds. <i>Trends in Parasitology</i> , 2001 , 17, 122-6	6.4	187
307	A G-quadruplex ligand with 10000-fold selectivity over duplex DNA. <i>Journal of the American Chemical Society</i> , 2007 , 129, 1502-3	16.4	176
306	Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents. <i>Chemistry - A European Journal</i> , 1999 , 5, 3644-3650	4.8	174
305	Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. <i>Nucleic Acids Research</i> , 2003 , 31, e88	20.1	163
304	"Redox Tautomerism" in High-Valent Metal-oxo-aquo Complexes. Origin of the Oxygen Atom in Epoxidation Reactions Catalyzed by Water-Soluble Metalloporphyrins. <i>Journal of the American Chemical Society</i> , 1994 , 116, 9375-9376	16.4	161

303	Biomimetic Oxidations Catalyzed by Transition Metal Complexes 2000,		156	
302	CO2as the Ultimate Degradation Product in the H2O2Oxidation of 2,4,6-Trichlorophenol Catalyzed by Iron Tetrasulfophthalocyanine. <i>Journal of the American Chemical Society</i> , 1996 , 118, 7410-7411	16.4	152	
301	Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. <i>Journal of General Virology</i> , 2004 , 85, 1791-1799	4.9	151	
300	Epoxidation of olefins by cytochrome P-450 model compounds: kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity. <i>Journal of the American Chemical Society</i> , 1985 , 107, 2000-2005	16.4	150	
299	The antimalarial drug artemisinin alkylates heme in infected mice. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2005 , 102, 13676-80	11.5	145	
298	Regulation of copper and iron homeostasis by metal chelators: a possible chemotherapy for Alzheimer's disease. <i>Accounts of Chemical Research</i> , 2015 , 48, 1332-9	24.3	139	
297	Is alkylation the main mechanism of action of the antimalarial drug artemisinin?. <i>Chemical Society Reviews</i> , 1998 , 27, 273	58.5	133	
296	Trioxaquines are new antimalarial agents active on all erythrocytic forms, including gametocytes. <i>Antimicrobial Agents and Chemotherapy</i> , 2007 , 51, 1463-72	5.9	133	
295	Guanine oxidation: one- and two-electron reactions. <i>Chemistry - A European Journal</i> , 2006 , 12, 6018-30	4.8	132	
294	Preparation and antimalarial activities of "trioxaquines", new modular molecules with a trioxane skeleton linked to a 4-aminoquinoline. <i>ChemBioChem</i> , 2000 , 1, 281-3	3.8	132	
293	Heme as trigger and target for trioxane-containing antimalarial drugs. <i>Accounts of Chemical Research</i> , 2010 , 43, 1444-51	24.3	129	
292	Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates. <i>Nucleic Acids Research</i> , 2005 , 33, 5371-9	20.1	124	
291	Dxo-hydroxo tautomerismD useful mechanistic tool in oxygenation reactions catalysed by water-soluble metalloporphyrins. <i>Chemical Communications</i> , 1998 , 2167-2173	5.8	123	
290	Synthesis and antimalarial activity of trioxaquine derivatives. <i>Chemistry - A European Journal</i> , 2004 , 10, 1625-36	4.8	12 0	
289	Selection of a trioxaquine as an antimalarial drug candidate. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2008 , 105, 17579-84	11.5	119	
288	Intramolecular kinetic isotope effects in alkane hydroxylations catalyzed by manganese and iron porphyrin complexes. <i>Journal of the American Chemical Society</i> , 1993 , 115, 7293-7299	16.4	119	
287	Metal Ions in Alzheimer's Disease: A Key Role or Not?. Accounts of Chemical Research, 2019, 52, 2026-20	325 4.3	117	
286	Oxidation at Carbon-1' of DNA Deoxyriboses by the Mn-TMPyP/KHSO5 System Results from a Cytochrome P-450-type Hydroxylation Reaction. <i>Journal of the American Chemical Society</i> , 1995 , 117, 2035-2036	16.4	113	

285	Olefin epoxidation and alkane hydroxylation catalyzed by robust sulfonated manganese and iron porphyrins supported on cationic ion-exchange resins. <i>Inorganic Chemistry</i> , 1992 , 31, 1999-2006	5.1	113
284	Characterization of the Alkylation Product of Heme by the Antimalarial Drug Artemisinin We are grateful to the CNRS for financial support, and to the French Ministery of Education for a PhD grant to J.C. Dr. Yannick Coppel (LCC-CNRS) is gratefully acknowledged for discussions on NMR data	16.4	112
283	Oxidative Degradation of Aromatic Pollutants by Chemical Models of Ligninase Based on Porphyrin Complexes. <i>Angewandte Chemie International Edition in English</i> , 1990 , 29, 1471-1473		112
282	Preparation and study of new poly-8-hydroxyquinoline chelators for an anti-Alzheimer strategy. <i>Chemistry - A European Journal</i> , 2008 , 14, 682-96	4.8	111
281	Structures of Fe(II) Complexes with N,N,N'-Tris(2-pyridylmethyl)ethane-1,2-diamine Type Ligands. Bleomycin-like DNA Cleavage and Enhancement by an Alkylammonium Substituent on the N' Atom of the Ligand. <i>Inorganic Chemistry</i> , 1999 , 38, 1085-1092	5.1	110
280	Porphyrin derivatives for telomere binding and telomerase inhibition. <i>ChemBioChem</i> , 2005 , 6, 123-32	3.8	106
279	Characterization of the First Covalent Adduct between Artemisinin and a Heme Model. <i>Journal of the American Chemical Society</i> , 1997 , 119, 5968-5969	16.4	105
278	Chemistry. Catalytic degradation of chlorinated phenols. <i>Science</i> , 2002 , 296, 270-1	33.3	101
277	Preparation, characterization and crystal structures of manganese(II), iron(III) and copper(II) complexes of the bi. <i>Journal of Biological Inorganic Chemistry</i> , 2001 , 6, 14-22	3.7	100
276	Mechanisms of DNA cleavage by copper complexes of 3-clip-phen and of its conjugate with a distamycin analogue. <i>Nucleic Acids Research</i> , 2000 , 28, 4856-64	20.1	97
275	Schistosomiasis chemotherapy. Angewandte Chemie - International Edition, 2013, 52, 7936-56	16.4	96
274	Biomimetic Chemical Catalysts in the Oxidative Activation of Drugs. <i>Advanced Synthesis and Catalysis</i> , 2004 , 346, 171-184	5.6	95
273	Metalloporphyrin-Catalyzed Oxidation of 2-Methylnaphthalene to Vitamin K(3) and 6-Methyl-1,4-naphthoquinone by Potassium Monopersulfate in Aqueous Solution. <i>Journal of Organic Chemistry</i> , 1997 , 62, 673-678	4.2	94
272	Alkylation of heme by the antimalarial drug artemisinin. Chemical Communications, 2002, 414-5	5.8	94
271	Trioxaferroquines as new hybrid antimalarial drugs. Journal of Medicinal Chemistry, 2010, 53, 4103-9	8.3	92
270	Oxidative Degradation of Polychlorinated Phenols Catalyzed by Metallosulfophthalocyanines. <i>Chemistry - A European Journal</i> , 1996 , 2, 1308-1317	4.8	92
269	Sequential addition of H2O2, pH and solvent effects as key factors in the oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. <i>New Journal of Chemistry</i> , 1998 , 22, 45-51	3.6	91
268	Factors controlling the reactivity of a ligninase model based on the association of potassium monopersulfate to manganese and iron porphyrin complexes. <i>Journal of Organic Chemistry</i> , 1989 , 54, 5008-5011	4.2	89

(2001-1990)

267	Highly Selective Bromination of Tetramesitylporphyrin: An Easy Access to Robust Metalloporphyrins, M-Br8TMP and M-Br8TMPS. Examples of application in catalytic oxygenation and oxidation reactions <i>Tetrahedron Letters</i> , 1990 , 31, 1991-1994	2	88
266	DNA cleavage studies of mononuclear and dinuclear copper(II) complexes with benzothiazolesulfonamide ligands. <i>Journal of Biological Inorganic Chemistry</i> , 2003 , 8, 644-52	3.7	86
265	Efficient Oxidation of 2Deoxyguanosine by Mn-TMPyP/KHSO5 to Imidazolone dlz without Formation of 8-Oxo-dG. <i>Journal of the American Chemical Society</i> , 1998 , 120, 11548-11553	16.4	84
264	Catalase modeling with metalloporphyrin complexes having an oxygen ligand in a proximal position. Comparison with complexes containing a proximal nitrogen. <i>Inorganic Chemistry</i> , 1991 , 30, 706	5- 7 7 1 1	83
263	Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. <i>New Journal of Chemistry</i> , 2003 , 27, 1713-1719	3.6	81
262	A minor groove binding copper-phenanthroline conjugate produces direct strand breaks via beta-elimination of 2-deoxyribonolactone. <i>Journal of the American Chemical Society</i> , 2002 , 124, 9062-3	16.4	81
261	Furfural as a Marker of DNA Cleavage by Hydroxylation at the 5? Carbon of Deoxyribose. <i>Angewandte Chemie International Edition in English</i> , 1991 , 30, 702-704		81
260	Guanine Oxidation in Double-Stranded DNA by Mn-TMPyP/KHSO5: 5,8-Dihydroxy-7,8-dihydroguanine Residue as a Key Precursor of Imidazolone and Parabanic Acid Derivatives. <i>Journal of the American Chemical Society</i> , 2000 , 122, 2157-2167	16.4	80
259	Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: A new possibility for use in photodynamic therapy. <i>International Journal of Cancer</i> , 2000 , 88, 108-14	7.5	71
258	Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins 2000 , 1-35		71
257	Mechanism of DNA cleavage mediated by photoexcited non-steroidal antiinflammatory drugs. <i>Photochemistry and Photobiology</i> , 1991 , 54, 205-13	3.6	71
256	Epoxidation of olefins by cytochrome P-450 model compounds: mechanism of oxygen atom transfer. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1984 , 81, 3245	; -8 1.5	70
255	A new catalytic route for the epoxidation of styrene with sodium hypochlorite activated by transition metal complexes. <i>Tetrahedron Letters</i> , 1980 , 21, 4449-4450	2	70
254	Mn(III) pyrophosphate as an efficient tool for studying the mode of action of isoniazid on the InhA protein of Mycobacterium tuberculosis. <i>Antimicrobial Agents and Chemotherapy</i> , 2002 , 46, 2137-44	5.9	69
253	Efficient H2O2 oxidation of chlorinated phenols catalysed by supported iron phthalocyanines. Journal of the Chemical Society Chemical Communications, 1994 , 1799		68
252	Copper chelator induced efficient episodic memory recovery in a non-transgenic Alzheimer's mouse model. <i>PLoS ONE</i> , 2012 , 7, e43105	3.7	65
251	Mechanism of DNA cleavage by cationic manganese porphyrins: hydroxylations at the 1'-carbon and 5'-carbon atoms of deoxyriboses as initial damages. <i>Nucleic Acids Research</i> , 1991 , 19, 6283-8	20.1	65
250	A fast and efficient metal-mediated oxidation of isoniazid and identification of isoniazid-NAD(H) adducts. <i>ChemBioChem</i> , 2001 , 2, 877-83	3.8	64

249	New approach for the preparation of efficient DNA cleaving agents: ditopic copper-platinum complexes based on 3-Clip-Phen and cisplatin. <i>Journal of Medicinal Chemistry</i> , 2007 , 50, 3148-52	8.3	63
248	Oxygenation of hydrocarbons by cytochrome P-450 model compounds: modification of reactivity by axial ligands. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 1983 , 80, 7039-41	11.5	63
247	Structure/nuclease activity relationships of DNA cleavers based on cationic metalloporphyrin-oligonucleotide conjugates. <i>Biochemistry</i> , 1996 , 35, 9140-9	3.2	61
246	Proximal effect of the nitrogen ligands in the catalytic epoxidation of olefins by the sodium hypochlorite/manganese(III) porphyrin system. <i>Inorganic Chemistry</i> , 1988 , 27, 161-164	5.1	61
245	Alkylating Properties of Antimalarial Artemisinin Derivatives and Synthetic Trioxanes when Activated by a Reduced Heme Model. <i>Chemistry - A European Journal</i> , 1998 , 4, 1287-1296	4.8	60
244	Preparation of the New Bis(phenanthroline) Ligand "Clip-Phen" and Evaluation of the Nuclease Activity of the Corresponding Copper Complex. <i>Inorganic Chemistry</i> , 1998 , 37, 3486-3489	5.1	60
243	Oxidation of Polycyclic Aromatic Hydrocarbons Catalyzed by Iron Tetrasulfophthalocyanine FePcS: Inverse Isotope Effects and Oxygen Labeling Studies. <i>European Journal of Inorganic Chemistry</i> , 1998 , 1269-1281	2.3	59
242	From classical antimalarial drugs to new compounds based on the mechanism of action of artemisinin. <i>Pure and Applied Chemistry</i> , 2001 , 73, 1173-1188	2.1	58
241	Enhanced selectivity by an Bpen-well effectlin a metalloporphyrin-catalysed oxygenation reaction. Journal of the Chemical Society Perkin Transactions II, 1984 , 1967-1970		58
240	Preferential hydroxylation by the chemical nuclease meso-tetrakis-(4-N-methylpyridiniumyl)porphyrinatomanganeseIII pentaacetate/KHSO5 at the 5' carbon of deoxyriboses on both 3' sides of three contiguous A.T base pairs in short	11.5	57
239	Potential antitumor agents: synthesis and biological properties of aliphatic amino acid 9-hydroxyellipticinium derivatives. <i>Journal of Medicinal Chemistry</i> , 1984 , 27, 1161-6	8.3	57
238	In vitro activities of DU-1102, a new trioxaquine derivative, against Plasmodium falciparum isolates. <i>Antimicrobial Agents and Chemotherapy</i> , 2001 , 45, 1886-8	5.9	55
237	Targeting the DNA cleavage activity of copper phenanthroline and clip-phen to A.T tracts via linkage to a poly-N-methylpyrrole. <i>Bioconjugate Chemistry</i> , 2000 , 11, 892-900	6.3	55
236	Synthesis of cationic metalloporphyrin precursors related to the design of DNA cleavers. <i>Journal of Organic Chemistry</i> , 1993 , 58, 2913-2917	4.2	55
235	Alkylating capacity and reaction products of antimalarial trioxanes after activation by a heme model. <i>Journal of Organic Chemistry</i> , 2002 , 67, 609-19	4.2	53
234	Synthesis of new macrocyclic chiral manganese(III) Schiff bases as catalysts for asymmetric epoxidation. <i>Journal of Organic Chemistry</i> , 2006 , 71, 1449-57	4.2	51
233	Improvement of porphyrin cellular delivery and activity by conjugation to a carrier peptide. <i>Bioconjugate Chemistry</i> , 2001 , 12, 691-700	6.3	51
232	Trioxaquines and heme-artemisinin adducts inhibit the in vitro formation of hemozoin better than chloroquine. <i>Antimicrobial Agents and Chemotherapy</i> , 2007 , 51, 3768-70	5.9	50

(2009-2000)

Oxidative damage generated by an oxo-metalloporphyrin onto the human telomeric sequence. <i>Biochemistry</i> , 2000 , 39, 9514-22	3.2	50	
Role of pyridine in the catalytic activation of sodium hypochlorite in the presence of manganese porphyrin. <i>Tetrahedron Letters</i> , 1982 , 23, 2449-2452	2	50	
Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease. <i>Chemistry - A European Journal</i> , 2014 , 20, 6771-85	4.8	48	
Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. <i>Journal of Molecular Catalysis A</i> , 1997 , 117, 103-114		48	
DNA Cleavage by Copper Complexes of 2- and 3-Clip-Phen Derivatives. <i>European Journal of Inorganic Chemistry</i> , 2003 , 2003, 528-540	2.3	48	
Nonenzymic cleavage and ligation of DNA at a three A.cntdot.T base pair site. A two-step pseudohydrolysis of DNA. <i>Journal of the American Chemical Society</i> , 1993 , 115, 7939-7943	16.4	48	
Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. <i>New Journal of Chemistry</i> , 2007 , 31, 193	3.6	47	
Porphyrin-aminoquinoline conjugates as telomerase inhibitors. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 921-7	3.9	46	
Metal-Oxo Species in P450 Enzymes and Biomimetic Models. Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. <i>Topics in Catalysis</i> , 2002 , 21, 47-54	2.3	45	
DNA binding and cleavage by a cationic manganese porphyrin-peptide nucleic acid conjugate. <i>Bioconjugate Chemistry</i> , 1997 , 8, 267-70	6.3	44	
The key role of heme to trigger the antimalarial activity of trioxanes. <i>Coordination Chemistry Reviews</i> , 2005 , 249, 1927-1936	23.2	44	
DNA strand breaks photosensitized by benoxaprofen and other non steroidal antiinflammatory agents. <i>Biochemical Pharmacology</i> , 1990 , 39, 407-13	6	43	
Metalloporphyrin-catalysed epoxidation of terminal aliphatic olefins with hypochlorite salts or potassium hydrogen persulphate. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1985 , 1735		43	
C10-modified artemisinin derivatives: efficient heme-alkylating agents. <i>Angewandte Chemie - International Edition</i> , 2005 , 44, 2060-3; author reply 2064-5	16.4	42	
The Ligand 1,10-Phenanthroline-2,9-dicarbaldehyde Dioxime can Act Both as a Tridentate and as a Tetradentate Ligand Synthesis, Characterization and Crystal Structures of its Transition Metal Complexes. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 1985-1996	2.3	42	
Oxone as oxygen donor in the catalytic hydroxylation of saturated hydrocarbons. <i>Tetrahedron Letters</i> , 1985 , 26, 4459-4462	2	42	
Anti-human immunodeficiency virus effects of cationic metalloporphyrin-ellipticine complexes. <i>Biochemical Pharmacology</i> , 1992 , 44, 1675-9	6	41	
In vitro activities of trioxaquines against Schistosoma mansoni. <i>Antimicrobial Agents and Chemotherapy</i> , 2009 , 53, 4903-6	5.9	40	
	Role of pyridine in the catalytic activation of sodium hypochlorite in the presence of manganese porphyrin. <i>Tetrahedron Letters</i> , 1982, 23, 2449-2452 Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease. <i>Chemistry - A European Journal</i> , 2014, 20, 6771-85 Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. <i>Journal of Molecular Catalysis A</i> , 1997, 117, 103-114 DNA Cleavage by Copper Complexes of 2- and 3-Clip-Phen Derivatives. <i>European Journal of Inorganic Chemistry</i> , 2003, 2003, 528-540 Nonenzymic cleavage and ligation of DNA at a three A.cntdot.T base pair site. A two-step pseudohydrolysis of DNA. <i>Journal of the American Chemical Society</i> , 1993, 115, 7939-7943 Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. <i>New Journal of Chemistry</i> , 2007, 311, 193 Porphyrin-aminoquinoline conjugates as telomerase inhibitors. <i>Organic and Biamolecular Chemistry</i> , 2003, 1, 921-7 Metal-Oxo Species in P450 Enzymes and Biomimetic Models. Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. <i>Topics in Catalysis</i> , 2002, 21, 47-54 DNA binding and cleavage by a cationic manganese porphyrin-peptide nucleic acid conjugate. <i>Bioconjugate Chemistry</i> , 1997, 8, 267-70 The key role of heme to trigger the antimalarial activity of trioxanes. <i>Coordination Chemistry Reviews</i> , 2005, 249, 1927-1936 DNA strand breaks photosensitized by benoxaprofen and other non steroidal antiinflammatory agents. <i>Biochemical Pharmacology</i> , 1990, 39, 407-13 Metalloporphyrin-catalysed epoxidation of terminal aliphatic olefins with hypochlorite salts or potassium hydrogen persulphate. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1985, 1735 C10-modified artemisinin derivatives: efficient heme-alkylating agents. <i>Angewandte Chemie International Edition</i> , 2005, 44, 2060-3; author reply 2064-5 The Ligand 1,10-Phenanthroline-2,9-dicarbaldehyde Dioxime can Act Both as a Tridentate and as a Tetradentae Ligand Bynthesis, Characte	Bios-Brighty, 2000, 39, 9514-22 Role of pyridine in the catalytic activation of sodium hypochlorite in the presence of manganese porphyrin. Tetrahedron Letters, 1982, 23, 2449-2452 Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease. Chemistry - A European Journal, 2014, 20, 6771-85 Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. Journal of Molecular Catalysis A, 1997, 117, 103-114 DNA Cleavage by Copper Complexes of 2- and 3-Clip-Phen Derivatives. European Journal of Inorganic Chemistry, 2003, 528-540 Nonenzymic cleavage and ligation of DNA at a three A-cntdot.T base pair site. A two-step pseudohydrolysis of DNA. Journal of the American Chemical Society, 1993, 115, 7939-7943 Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. New Journal of Chemistry, 2007, 31, 193 Porphyrin-aminoquinoline conjugates as telomerase inhibitors. Organic and Biomolecular Chemistry, 2003, 1, 921-7 Metal-Oxo Species in P450 Enzymes and Biomimetic Models. Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. Tapics in Catalysis, 2002, 21, 47-54 DNA binding and cleavage by a cationic manganese porphyrin-peptide nucleic acid conjugate. Bioconjugate Chemistry, 1997, 8, 267-70 The key role of heme to trigger the antimalarial activity of trioxanes. Coordination Chemistry Reviews, 2005, 249, 1927-1936 DNA strand breaks photosensitized by benoxaprofen and other non steroidal antiinflammatory agents. Biochemical Pharmacology, 1990, 39, 407-13 Metalloporphyrin-catalysed epoxidation of terminal aliphatic olefins with hypochlorite salts or potassium hydrogen persulphate. Journal of the Chemical Society Perkin Transactions II, 1985, 1735 C10-modified artemisinin derivatives: efficient heme-alkylating agents. Angewandte Chemie International Edition, 2005, 44, 2060-33, author reply 2004-5 Oxone as oxygen donor in the catalytic hydroxylation of saturated hydrocarbons. Tetrahedron Letters, 1985, 26, 4459-4462 Anti-human	Role of pyridine in the catalytic activation of sodium hypochlorite in the presence of manganese porphyrin. **Petrahedron Letters*, 1982. 23. 2449-2452 Characterization of new specific copper chelators as potential drugs for the treatment of Alzheimer's disease. *Chemistry - A European Journal, 2014, 20, 6771-85 Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. *Journal of Molecular Catalysis A, 1997, 117, 103-114 DNA Cleavage by Copper Complexes of 2- and 3-Clip-Phen Derivatives. *European Journal of Inorganic Chemistry, 2003, 2003, 528-540 Nonenzymic cleavage and ligation of DNA at a three A cntdot. T base pair site. A two-step pseudohydrolysis of DNA. *Journal of the American Chemical Society, 1993, 115, 7939-7943 Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. *New Journal of Chemistry, 2007, 31, 193 Bis-8-hydroxyquinoline conjugates as telomerase inhibitors. *Organic and Biomolecular Chemistry, 2003, 1, 291-7 Metal-Oxo Species in P450 Enzymes and Biomimetic Models. Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. *Topics in Catalysis, 2002, 21, 47-54 DNA binding and cleavage by a cationic manganese porphyrin-peptide nucleic acid conjugate. *Bioconjugate Chemistry, 1997, 8, 267-70 The key role of heme to trigger the antimalarial activity of trioxanes. *Coordination Chemistry Reviews, 2005, 249, 1927-1936 DNA strand breaks photosensitized by benoxaprofen and other non steroidal antiinflammatory agents. *Biochemical Pharmacology, 1990, 39, 407-13 Metalloporphyrin-catalysed epoxidation of terminal aliphatic olefins with hypochlorite salts or potassium hydrogen persulphate. *Journal of the Chemical Society Perkin Transactions II, 1985, 1735 43 C10-modified artemisinin derivatives: efficient heme-alkylating agents. *Angewandte Chemie-International Edition, 2005, 44, 2060-3; author reply 2064-5 The Ligand 1,10-Phenanthroline-2,9-dicarbaldehyde Dioxina can Act Both as a Tridentate and as a Tetradentate Ligand Byonthesis, Characterizatio

213	Platinated copper(3-clip-phen) complexes as effective DNA-cleaving and cytotoxic agents. <i>Chemistry - A European Journal</i> , 2008 , 14, 3418-26	4.8	40
212	Metallophthalocyanines Linked to Organic Copolymers as Efficient Oxidative Supported Catalysts. <i>European Journal of Inorganic Chemistry</i> , 2001 , 2001, 1775-1783	2.3	40
211	Oxidative cleavage of DNA mediated by hybrid metalloporphyrin-ellipticine molecules and functionalized metalloporphyrin precursors. <i>Biochemistry</i> , 1990 , 29, 7868-75	3.2	40
210	The antimalarial trioxaquine DU1301 alkylates heme in malaria-infected mice. <i>Antimicrobial Agents and Chemotherapy</i> , 2008 , 52, 2966-9	5.9	38
209	Guanine oxidation: NMR characterization of a dehydro-guanidinohydantoin residue generated by a 2e-oxidation of d(GpT). <i>Journal of the American Chemical Society</i> , 2001 , 123, 5867-77	16.4	38
208	Synthesis of Two Acridine Conjugates of the Bis(phenanthroline) Ligand Clip-Phenland Evaluation of the Nuclease Activity of the Corresponding Copper Complexes. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 557-563	2.3	38
207	Hydroxylation, Epoxidation, and DNA Cleavage Reactions Mediated by the Biomimetic Mn-TMPyP/O2/Sulfite Oxidation System <i>Inorganic Chemistry</i> , 1999 , 38, 4123-4127	5.1	38
206	Kinetic investigations of oxidative degradation of aromatic pollutant 2,4,6-trichlorophenol by an iron-porphyrin complex, a model of ligninase. <i>Journal of Molecular Catalysis A</i> , 1996 , 113, 45-49		38
205	Preparation of a spermine conjugate of the bis-phenanthroline ligand Clip-Phen and evaluation of the corresponding copper complex. <i>Bioconjugate Chemistry</i> , 1998 , 9, 604-11	6.3	37
204	Dramatic increase of the DNA cleavage activity of Cu(Clip-phen) by fixing the bridging linker on the C3 position of the phenanthroline units. <i>Chemical Communications</i> , 1998 , 2597-2598	5.8	36
203	Catalytic epoxidation of aliphatic terminal olefins with sodium hypochlorite. <i>Tetrahedron Letters</i> , 1984 , 25, 1895-1896	2	36
202	Preparation and Crystal Structures of Manganese, Iron, and Cobalt Complexes of the Bis[di(2-pyridyl)methyl]amine (bdpma) Ligand and Its Oxidative Degradation Product 1,3,3-Tris(2-pyridyl)-3H-imidazo[1,5-a]pyridin-4-ium (tpip); Origin of the bdpma Fragility. <i>Chemistry</i> -	4.8	35
201	Preparation and crystal structure of Etyclopentadienyl-1,2-bis(diphenylphosphino)ethaneironmagnesium bromide tris(tetrahydrofuran), a transitionEnetal Grignard reagent. <i>Journal of the Chemical Society Chemical</i>		35
200	Communications, 1974 , 44-44 Preparation et proprietes chimiques de l?inorganomagnesien Cp(DPPE)FeMgBr. <i>Journal of Organometallic Chemistry</i> , 1978 , 146, 151-167	2.3	35
199	Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 600-608	2.3	34
198	Microstructured liposome array. <i>Bioconjugate Chemistry</i> , 2006 , 17, 245-7	6.3	34
197	Key Role of the Phosphate Buffer in the H2O2 Oxidation of Aromatic Pollutants Catalyzed by Iron Tetrasulfophthalocyanine. <i>Journal of Catalysis</i> , 2001 , 202, 177-186	7.3	34
196	Selective Cleavage of a 35-mer Single-Stranded DNA Containing the Initiation Codon of the TAT Gene of HIV-1 by a Tailored Cationic Manganese Porphyrin. <i>Angewandte Chemie International</i>		34

(2006-1991)

19	Syntheses and in vitro evaluation of water-soluble "cationic metalloporphyrin-ellipticine" molecules having a high affinity for DNA. <i>Journal of Medicinal Chemistry</i> , 1991 , 34, 900-6	8.3	34	
19	omicron-Quinone formation in the biochemical oxidation of the antitumor drug N2-methyl-9-hydroxyellipticinium acetate. <i>Journal of Medicinal Chemistry</i> , 1983 , 26, 574-9	8.3	34	
19	Peroxidase-catalyzed covalent binding of the antitumor drug N2-methyl-9-hydroxyellipticinium to DNA in vitro. <i>Biochemistry</i> , 1986 , 25, 1240-5	3.2	34	
19	Antischistosomal activity of trioxaquines: in vivo efficacy and mechanism of action on Schistosoma mansoni. <i>PLoS Neglected Tropical Diseases</i> , 2012 , 6, e1474	4.8	33	
19	Synthesis of Trioxaquantel Derivatives as Potential New Antischistosomal Drugs. <i>European Journal of Organic Chemistry</i> , 2008 , 2008, 895-913	3.2	33	
19	O Alkylation of human hemoglobin A0 by the antimalarial drug artemisinin. <i>FEBS Letters</i> , 2004 , 556, 245-	· 8 3.8	33	
18	In vitro and in vivo potentiation of artemisinin and synthetic endoperoxide antimalarial drugs by metalloporphyrins. <i>Antimicrobial Agents and Chemotherapy</i> , 2000 , 44, 2836-41	5.9	33	
18	Development of isoniazid-NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents. <i>European Journal of Medicinal Chemistry</i> , 2010 , 45, 4554-61	6.8	32	
18	Origin of the Oxygen Atom in C-H Bond Oxidations Catalyzed by a Water-Soluble Metalloporphyrin. Inorganic Chemistry, 1997 , 36, 3488-3492	5.1	32	
18	Manganese(III) Porphyrin Catalysts for the Oxidation of Terpene Derivatives: A Comparative Study. Journal of Catalysis, 2002 , 206, 349-357	7.3	32	
18	Preparation and nuclease activity of hybrid "metallotris(methylpyridinium)porphyrin oligonucleotide" molecules having a 3'-loop for protection against 3'-exonucleases. <i>Bioconjugate Chemistry</i> , 1995 , 6, 466-72	6.3	32	
18	Development of Phenothiazine-Based Theranostic Compounds That Act Both as Inhibitors of Hamyloid Aggregation and as Imaging Probes for Amyloid Plaques in Alzheimer's Disease. <i>ACS Chemical Neuroscience</i> , 2017 , 8, 798-806	5.7	31	
18	Docking studies of structurally diverse antimalarial drugs targeting PfATP6: no correlation between in silico binding affinity and in vitro antimalarial activity. <i>ChemMedChem</i> , 2009 , 4, 1469-79	3.7	31	
18	The first chemical synthesis of the core structure of the benzoylhydrazine-NAD adduct, a competitive inhibitor of the Mycobacterium tuberculosis enoyl reductase. <i>Journal of Organic Chemistry</i> , 2005 , 70, 10502-10	4.2	31	
18	NMR characterization of covalent adducts obtained by alkylation of heme with the antimalarial drug artemisinin. <i>Inorganica Chimica Acta</i> , 2002 , 339, 488-496	2.7	31	
18	A macrocyclic chiral manganese(III) Schiff base complex as an efficient catalyst for the asymmetric epoxidation of olefins. <i>Journal of Catalysis</i> , 2005 , 234, 250-255	7.3	31	
17	Cleavage of double-stranded DNA by 'metalloporphyrin-linker-oligonucleotide' molecules: influence of the linker. <i>Nucleic Acids Research</i> , 1995 , 23, 3894-900	20.1	31	
17	Guanine oxidation by electron transfer: one- versus two-electron oxidation mechanism. ChemBioChem, 2006 , 7, 125-33	3.8	30	

177	Characterization of a 5'-aldehyde terminus resulting from the oxidative attack at C5' of a 2-deoxyribose on DNA. <i>Chemical Research in Toxicology</i> , 2001 , 14, 1413-20	4	30
176	Preparation of hybrid "DNA cleaver-oligonucleotide" molecules based on a metallotris(methylpyridiniumyl)porphyrin motif. <i>Bioconjugate Chemistry</i> , 1993 , 4, 366-71	6.3	30
175	Iron-Phthalocyanine Catalyzed Epoxidation of Olefins by KHSO5. <i>Journal of Molecular Catalysis</i> , 1988 , 44, 187-190		30
174	Unexpected regiospecific alkylation of the antitumor agent N2-methyl-9-hydroxyellipticinium acetate with N, O or S donors. <i>Tetrahedron Letters</i> , 1983 , 24, 365-368	2	30
173	Isolation of a high-valent Bxo-likelimanganese porphyrin complex obtained from NaOCl oxidation. Journal of the Chemical Society Chemical Communications, 1983, 1364-1366		30
172	Evidences for an efficient demethylation of methoxyellipticine derivatives catalyzed by a peroxidase. <i>Journal of the American Chemical Society</i> , 1985 , 107, 2558-2560	16.4	30
171	Magnetite Fe O Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 14758-14763	16.4	30
170	DNA cleavage and binding selectivity of a heterodinuclear Pt-Cu(3-Clip-Phen) complex. <i>Journal of Biological Inorganic Chemistry</i> , 2008 , 13, 575-86	3.7	29
169	Cytostatic activity of 1,10-phenanthroline derivatives generated by the clip-phen strategy. <i>ChemBioChem</i> , 2005 , 6, 686-91	3.8	29
168	Characterization of the Main Radical and Products Resulting from a Reductive Activation of the Antimalarial Arteflene (Ro 42-1611). <i>Journal of Organic Chemistry</i> , 1999 , 64, 6776-6781	4.2	29
167	Reaction d?homocouplage du type kharasch catalysee par des complexes du fer. <i>Journal of Organometallic Chemistry</i> , 1978 , 146, 169-178	2.3	29
166	Characterization of the dehydro-guanidinohydantoin oxidation product of guanine in a dinucleotide. <i>Chemical Research in Toxicology</i> , 2002 , 15, 1643-51	4	28
165	Heme alkylation by artesunic acid and trioxaquine DU1301, two antimalarial trioxanes. <i>ChemBioChem</i> , 2005 , 6, 653-8	3.8	28
164	Preparation of Tetradentate Copper Chelators as Potential Anti-Alzheimer Agents. <i>ChemMedChem</i> , 2018 , 13, 684-704	3.7	27
163	Theoretical study of the interaction between a high-valent manganese porphyrin oxyl-(hydroxo)-Mn(IV)-TMPyP and double-stranded DNA. <i>Journal of Computational Chemistry</i> , 2003 , 24, 797-805	3.5	27
162	On the chemical nature of DNA and RNA modification by a hemin model system. <i>Biochemistry</i> , 1990 , 29, 4783-9	3.2	27
161	Catalytic hydroxylation of saturated hydrocarbons with the sodium hypohalite/manganese porphyrin system. <i>Journal of Molecular Catalysis</i> , 1985 , 31, 221-224		27
160	Nuclease activity and binding characteristics of a cationic "manganese porphyrin-bis(benzimidazole) dye (Hoechst 33258)" conjugate. <i>Bioconjugate Chemistry</i> , 1997 , 8, 222-31	6.3	26

159	Evidence for high-valent iron-oxo species active in the DNA breaks mediated by iron-bleomycin. <i>Biochemical Pharmacology</i> , 1989 , 38, 133-40	6	26
158	Oxidative degradation of cationic metalloporphyrins in the presence of nucleic acids: a way to binding constants?. <i>Bioconjugate Chemistry</i> , 1991 , 2, 201-6	6.3	26
157	Horseradish peroxidase: a useful tool for modeling the extra-hepatic biooxidation of exogens. <i>Biochimie</i> , 1987 , 69, 3-9	4.6	26
156	Aspects of metalloporphyrin-catalyzed oxygenation of hydrocarbons with anionic single oxygen donors, NaOCl and KHSO5. <i>Journal of Molecular Catalysis</i> , 1987 , 41, 185-195		26
155	Transfer of Copper from an Amyloid to a Natural Copper-Carrier Peptide with a Specific Mediating Ligand. <i>Chemistry - A European Journal</i> , 2015 , 21, 17085-90	4.8	25
154	Preparation of New Bis(8-aminoquinoline) Ligands and Comparison with Bis(8-hydroxyquinoline) Ligands on Their Ability to Chelate CuII and ZnII. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 5622-5631	2.3	25
153	Oxidative degradation of chlorinated phenols catalyzed by a non-heme iron(III) complex. <i>Journal of Molecular Catalysis A</i> , 1999 , 137, 205-212		25
152	First example of a chloroperoxidase-type chlorination of dimedone using a supported manganese porphyrin catalyst. <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 1414		25
151	Spontaneous reduction of mixed 2,2'-bipyridine/methylamine/chloro complexes of Pt(IV) in water in the presence of light is accompanied by complex isomerization, loss of methylamine, and formation of a strong oxidant, presumably HOCl. <i>Chemistry - A European Journal</i> , 2007 , 13, 3980-8	4.8	24
150	Ozone epoxidation of olefins catalyzed by highly robust manganese and iron porphyrin complexes. <i>Journal of Organic Chemistry</i> , 1991 , 56, 3725-3727	4.2	24
149	Stereochemical arguments against a possible chlorohydrin route in the catalytic epoxidation of olefins with NaOCl/Mn-porphyrins. <i>Tetrahedron Letters</i> , 1983 , 24, 3621-3624	2	24
148	Sulfonated and acetamidosulfonylated tetraarylporphyrins as biomimetic oxidation catalysts under aqueous conditions. <i>Inorganica Chimica Acta</i> , 1998 , 272, 228-234	2.7	23
147	1H and 13C NMR characterization of hemiamidal isoniazid-NAD(H) adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. <i>Chemistry - A European Journal</i> , 2003 , 9, 2034-8	4.8	23
146	Metal-Mediated Oxidation of Tertiary Alcohols and Related Fragmentations. <i>European Journal of Inorganic Chemistry</i> , 2000 , 2000, 1391-1406	2.3	23
145	Magnesium monoperoxophtalate: an efficient single oxygen atom donor in DNA cleavage catalyzed by metalloporphyrin. <i>Biochemical and Biophysical Research Communications</i> , 1989 , 160, 1212-8	3.4	23
144	A straightforward preparation of primary alkyl triflates and their utility in the synthesis of derivatives of ethidium. <i>Journal of the Chemical Society, Perkin Transactions</i> 1, 2000 , 571-574		22
143	31P NMR characterization of terminal phosphates induced on DNA by the artificial nuclease 'Mn-TMPyP/KHSO5' in comparison with DNases I and II. <i>Nucleic Acids Research</i> , 1991 , 19, 2835-9	20.1	22
142	Definitive evidence for a proximal effect of pyridine in the NaOCl/Mn(porphyrin)x / pyridine catalytic oxygenation system. <i>Tetrahedron Letters</i> , 1984 , 25, 5773-5776	2	22

141	General Overview on Oxidations Catalyzed by Metalloporphyrins. <i>Catalysis By Metal Complexes</i> , 1994 , 1-47		22
140	Synthesis of Bis[di(2-pyridyl)methyl]amine (BDPMA) by a Novel One-Pot Multi-Step Reductive Amination with Molecular Sieves and Zn/iPrOH. <i>European Journal of Organic Chemistry</i> , 1998 , 1998,	1271 ² 727	3 ²¹
139	Influence of the Copper Coordination Geometry on the DNA Cleavage Activity of Clip-Phen Complexes Studied by DFT. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 612-619	2.3	21
138	Alkylating properties of synthetic trioxanes related to artemisinin. <i>Journal of the Chemical Society, Perkin Transactions 1</i> , 2000 , 1265-1270		21
137	Influence of chelators and iron ions on the production and degradation of H2O2 by beta-amyloid-copper complexes. <i>Journal of Inorganic Biochemistry</i> , 2006 , 100, 2117-26	4.2	20
136	Synthesis and activity of macrocyclized chiral Mn(III)Bchiff-base epoxidation catalysts. <i>Journal of Organometallic Chemistry</i> , 2005 , 690, 2163-2171	2.3	20
135	Acridine conjugates of 3-clip-phen: influence of the linker on the synthesis and the DNA cleavage activity of their copper complexes. <i>Bioconjugate Chemistry</i> , 2002 , 13, 1013-20	6.3	20
134	Synthesis and DNA cleavage of 2?-O-amino-linked metalloporphyrinBligonucleotide conjugates. Journal of the Chemical Society, Perkin Transactions 1, 2000 , 3088-3095		20
133	DNA cleavage by a finetalloporphyrin-spermine-oligonucleotidelimolecule. <i>Journal of the Chemical Society Chemical Communications</i> , 1995 , 181-182		20
132	Die C?H-Bindungen der Zuckerbausteine von DNA als Angriffspunkte fEchemische Nucleasen und Wirkstoffe. <i>Angewandte Chemie</i> , 1995 , 107, 819-845	3.6	20
131	Human and rat urinary metabolites of the antitumor drug Celiptium (N2-methyl-9-hydroxyellipticinium acetate, NSC 264137). Identification of cysteine conjugates supporting the "biooxidative alkylation" hypothesis. <i>Biochemical Pharmacology</i> , 1983 , 32, 3887-90	6	20
130	DNA breaks generated by the bleomycin-iron III complex in the presence of KHSO5, a single oxygen donor. <i>Biochemical and Biophysical Research Communications</i> , 1986 , 136, 1013-20	3.4	20
129	Ribose as the preferential target for the oxidized form of elliptinium acetate in ribonucleos(t)ides. Biological activities of the resulting adducts. <i>Journal of Medicinal Chemistry</i> , 1986 , 29, 1350-5	8.3	20
128	Trioxaquine PA1259 alkylates heme in the blood-feeding parasite Schistosoma mansoni. <i>Antimicrobial Agents and Chemotherapy</i> , 2011 , 55, 2403-5	5.9	19
127	Synthesis of the isonicotinoylnicotinamide scaffolds of the naturally occurring isoniazid-NAD(P) adducts. <i>Journal of Organic Chemistry</i> , 2007 , 72, 675-8	4.2	19
126	Enantioselective epoxidation of olefins by single-oxygen atom donors catalyzed by managanese-glycoconjugated porphyrins. <i>Journal of Molecular Catalysis A</i> , 1996 , 113, 23-34		19
125	Brominated and chlorinated manganese chiral Schiff base complexes as epoxidation catalysts. Journal of Molecular Catalysis, 1993 , 85, 13-19		19
124	Synthesis of hybrid Thetalloporphyrin-ellipticine Imolecules. <i>Tetrahedron</i> , 1989 , 45, 2641-2648	2.4	19

123	Influence of the proximal ligand in the dismutation of hydrogen peroxide catalysed by manganese and iron porphyrin complexes. <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 412-414		19	
122	Nuclease activity of a water-soluble manganese porphyrin associated with potassium hydrogen persulphate: oxidative cleavage of DNA. <i>Journal of the Chemical Society Chemical Communications</i> , 1987 , 1169		19	
121	Synthesis of tetramesitylporphyrin. <i>Inorganic Chemistry</i> , 1988 , 27, 209-210	5.1	19	
120	Preliminary approach to the mechanism of the NaOCl/Mn(TPP)OAc epoxidation system. <i>Journal of Molecular Catalysis</i> , 1984 , 23, 115-119		18	
119	Preparation of Tetracationic Metalloporphyrin Spermine Conjugates. <i>Journal of Organic Chemistry</i> , 1997 , 62, 3505-3510	4.2	17	
118	Preparation of cyclo-phen-type ligands: chelators of metal ions as potential therapeutic agents in the treatment of neurodegenerative diseases. <i>ChemBioChem</i> , 2005 , 6, 1976-80	3.8	17	
117	Characterization of an oxaluric acid derivative as a guanine oxidation product. <i>Chemical Communications</i> , 2001 , 2116-7	5.8	17	
116	Activity of trioxaquine PA1259 in mice infected by Schistosoma mansoni. <i>Comptes Rendus Chimie</i> , 2012 , 15, 75-78	2.7	16	
115	The Antimalarial Artemisone is an Efficient Heme Alkylating Agent. <i>European Journal of Inorganic Chemistry</i> , 2008 , 2008, 2133-2135	2.3	16	
114	Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO(5): At Least Three Independent Reaction Pathways. <i>Metal-Based Drugs</i> , 2001 , 8, 47-56		16	
113	Mechanism of the Catalytic Oxidation of Tertiary Alcohols by the Water-Soluble Mn-TMPyP/KHSO5 System: Fragmentation versus O-Neophyl Rearrangement. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 1467-1477	2.3	16	
112	The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids. <i>ChemistryOpen</i> , 2015 , 4, 27-31	2.3	15	
111	Heme alkylation by artemisinin and trioxaquines. Journal of Physical Organic Chemistry, 2006, 19, 562-56	9 .1	15	
110	Unprecedented amido-bridged dinuclear mixed-valence cobalt complexes: first structure of a dinuclear EDMe Co(II)/Co(III) complex. <i>New Journal of Chemistry</i> , 2000 , 24, 949-951	3.6	15	
109	Modification of the thiourea linkage of a fluorescein-oligonucleotide conjugate to a guanidinium motif during ammonia deprotection. <i>Bioconjugate Chemistry</i> , 1998 , 9, 627-32	6.3	15	
108	Covalent binding of the antitumor agent N2-methyl-9-hydroxy-ellipticinium acetate (NSC 264137) on RNA and poly A in vitro. <i>Biochemical and Biophysical Research Communications</i> , 1984 , 124, 416-22	3.4	15	
107	N -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid-# <i>Chemistry - A European Journal</i> , 2018 , 24, 7825-7829	4.8	14	
106	Evidence for the contribution of the hemozoin synthesis pathway of the murine Plasmodium yoelii to the resistance to artemisinin-related drugs. <i>PLoS ONE</i> , 2012 , 7, e32620	3.7	14	

105	Ring Thain Tautomerism of Simplified Analogues of Isoniazid NAD(P) Adducts: an Experimental and Theoretical Study. <i>European Journal of Organic Chemistry</i> , 2007 , 2007, 1624-1630	3.2	14
104	Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): a theoretical approach. <i>Journal of Molecular Graphics and Modelling</i> , 2008 , 27, 536-45	2.8	14
103	A single-strand polymer of hexacoordinated zinc(II) phosphodiester complex. <i>Journal of Organometallic Chemistry</i> , 2001 , 624, 58-62	2.3	14
102	Characterization of the Alkylation Product of Heme by the Antimalarial Drug Artemisinin. <i>Angewandte Chemie</i> , 2001 , 113, 2008-2011	3.6	14
101	Models of Heme Peroxidases and Catalases 2000 , 171-214		14
100	StructureActivity Relationships of Synthetic Tricyclic Trioxanes Related to Artemisinin: The Unexpected Alkylative Property of a 3-(Methoxymethyl) Analog. <i>European Journal of Organic Chemistry</i> , 1999 , 1999, 1935-1938	3.2	14
99	Cleavage of double-stranded DNA by manganese tris(methylpyridiniumyl)porphyrin linked to 3?-spermine oligonucleotides. <i>Journal of Biological Inorganic Chemistry</i> , 1996 , 1, 239-246	3.7	14
98	Oxidativer Abbau aromatischer Schadstoffe durch chemische Ligninase-Modelle auf Porphyrin-Basis. <i>Angewandte Chemie</i> , 1990 , 102, 1488-1490	3.6	14
97	Hydroxylating activity of a water-soluble manganese porphyrin associated with potassium hydrogen persulfate: Formation of 8-hydroxyadenosine-5?-mono-phosphate from AMP <i>Tetrahedron Letters</i> , 1988 , 29, 6615-6617	2	14
96	Reduction of aromatic halides with sodium borohydride catalysed by titanium complexes. Unexpected role of air. <i>Journal of Organometallic Chemistry</i> , 1981 , 204, 345-346	2.3	14
95	Potentiation of artemisinin activity against chloroquine-resistant Plasmodium falciparum strains by using heme models. <i>Antimicrobial Agents and Chemotherapy</i> , 1999 , 43, 2555-8	5.9	14
94	Small Molecules: The Past or the Future in Drug Innovation?. <i>Metal Ions in Life Sciences</i> , 2019 , 19,	2.6	14
93	Alkylation of microperoxidase-11 by the antimalarial drug artemisinin. <i>ChemBioChem</i> , 2002 , 3, 1147-9	3.8	13
92	Synthesis of organo-soluble metallophthalocyanines bearing electron-withdrawing substituents. Journal of Porphyrins and Phthalocyanines, 2001, 05, 867-872	1.8	13
91	Further evidence for a metal-oxo intermediate in the olefin epoxidation by iron- or manganese-bleomycin complexes associated with KHSO5, an oxygen atom donor. <i>Tetrahedron Letters</i> , 1987 , 28, 2955-2958	2	13
90	Does chemistry have a future in therapeutic innovations?. <i>Angewandte Chemie - International Edition</i> , 2012 , 51, 8702-6	16.4	12
89	Studies on the 4-benzoylpyridine-3-carboxamide entity as a fragment model of the Isoniazid-NAD adduct. <i>Organic and Biomolecular Chemistry</i> , 2005 , 3, 666-9	3.9	12
88	How can iron salts mediate the degradation of nucleos(t)ides by elliptinium acetate via free-radicals?. <i>Biochemical and Biophysical Research Communications</i> , 1985 , 133, 15-22	3.4	12

87	Homogeneous catalytic activation of Grignard reagents by nickel complexes. A new stereospecific method for reduction of alkoxy-, chloro-, and fluoro-silanes. <i>Journal of the Chemical Society Chemical Communications</i> , 1973 , 164		12
86	Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer's disease. <i>Dyes and Pigments</i> , 2020 , 173, 107968	4.6	12
85	Endoperoxide-based compounds: cross-resistance with artemisinins and selection of a Plasmodium falciparum lineage with a K13 non-synonymous polymorphism. <i>Journal of Antimicrobial Chemotherapy</i> , 2018 , 73, 395-403	5.1	11
84	Alkylation of manganese(II) tetraphenylporphyrin by antimalarial fluorinated artemisinin derivatives. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2003 , 13, 1059-62	2.9	11
83	Use of short duplexes for the analysis of the sequence-dependent cleavage of DNA by a chemical nuclease, a manganese porphyrin. <i>ChemBioChem</i> , 2005 , 6, 2326-35	3.8	11
82	Convenient method for the preparation of 2'-deoxyribosylurea by thymidine oxidation and NMR study of both anomers. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2001 , 20, 1463-71	1.4	11
81	Organization processes of a pyropheophorbide permidine conjugate in the presence or absence of DNA. <i>Journal of the Chemical Society Perkin Transactions II</i> , 1996 , 1649-1654		11
80	Identification of sugar degradation intermediates in a metalloporphyrin mediated DNA cleavage resulting from hydroxylation at C-5?. <i>Journal of the Chemical Society Chemical Communications</i> , 1993 , 149-151		11
79	A study of the reaction between the dichloromethylphosphine luminium chloride complex and terpenes. Part 2. Reaction of the PCl2Me lCl3 complex and camphene, and an X-ray crystallographic study of the products. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1980 , 2136	-2140	11
78	Design and synthesis of new theranostic agents for near-infrared imaging of the theorem and inhibition of the theorem and inhibition of the theorem and the t	4.6	10
77	Photolysis and thermolysis of platinum(IV) 2,2'-bipyridine complexes lead to identical platinum(II)-DNA adducts. <i>Chemistry - A European Journal</i> , 2010 , 16, 11420-31	4.8	10
76	1H and 13C NMR characterization of pyridinium-type isoniazid-NAD adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. <i>Organic and Biomolecular Chemistry</i> , 2005 , 3, 670-3	3.9	10
75	Is the isonicotinoyl radical generated during activation of isoniazid by MnIII-pyrophosphate?. <i>Comptes Rendus Chimie</i> , 2002 , 5, 325-330	2.7	10
74	The P-Stereocontrolled Synthesis of PO/PS-Chimeric Oligonucleotides by Incorporation of Dinucleoside Phosphorothioates Bearing an O-4-Nitrophenyl Phosphorothioate Protecting Group. <i>European Journal of Organic Chemistry</i> , 2005 , 2005, 2924-2930	3.2	10
73	Oxidation of Dichloroanilines and Related Anilides Catalyzed by Iron(III) Tetrasulfonatophthalocyanine. <i>European Journal of Inorganic Chemistry</i> , 1999 , 1999, 2319-2325	2.3	10
72	Why Is Tetradentate Coordination Essential for Potential Copper Homeostasis Regulators in Alzheimer's Disease?. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 4712-4718	2.3	9
71	Oxidative damage on RNA mediated by cationic metalloporphyrin Intisense oligonucleotides conjugates <i>Journal of the Chemical Society Dalton Transactions</i> , 1997 , 4113-4118		9
70	Recent Advances in Malaria Chemotherapy. <i>Journal of the Chinese Chemical Society</i> , 2002 , 49, 301-310	1.5	9

69	Influence of the anion of FeIII salts on the product distribution in the oxidative degradation of a tetrapyridyl ligand. <i>New Journal of Chemistry</i> , 1999 , 23, 773-776	3.6	9
68	Furfural als Indikator einer DNA-Spaltung durch Hydroxylierung des C5?-Kohlenstoffatoms von Desoxyribose. <i>Angewandte Chemie</i> , 1991 , 103, 718-720	3.6	9
67	A convenient route to adenine N1-oxide mono- and polynucleotides by oxidation with potassium monopersulfate. <i>Journal of Organic Chemistry</i> , 1989 , 54, 3213-3215	4.2	9
66	Selective binding of elliptinium acetate onto the 3'-terminal ribose of diribonucleosides monophosphates. <i>Biochemical and Biophysical Research Communications</i> , 1985 , 128, 1173-9	3.4	9
65	Synthesis and antimalarial activity of 2-methoxyprop-2-yl peroxides derivatives. <i>Bioorganic and Medicinal Chemistry Letters</i> , 2003 , 13, 75-7	2.9	8
64	Alkylation of heme by artemisinin, an antimalarial drug. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry</i> , 2001 , 4, 85-89		8
63	Simple and Efficient Syntheses of 1,10-Phenanthrolines Substituted at C3 or C3 and C8 by Methoxy or Hydroxy Groups. <i>Synlett</i> , 2001 , 2001, 1629-1631	2.2	8
62	Synthesis, characterization and crystal structures of copper(II) complexes containing multidentate polypyridine ligands <i>Journal of the Chemical Society Dalton Transactions</i> , 1999 , 3989-3994		8
61	Requirement for the presence of a 2?—EOH group for the arylation of purine nucleosides by elliptinium acetate, an antitumour agent. <i>Journal of the Chemical Society Chemical Communications</i> , 1985 , 60-62		8
60	TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. <i>ACS Chemical Neuroscience</i> , 2021 , 12, 140-149	5.7	8
59	Synthesis of N-pyrimidin[1,3,4]oxadiazoles and N-pyrimidin[1,3,4]-thiadiazoles from 1,3,4-oxadiazol-2-amines and 1,3,4-thiadiazol-2-amines via Pd-catalyzed heteroarylamination. <i>Tetrahedron Letters</i> , 2019 , 60, 1359-1362	2	7
58	Alkylating ability of artemisinin after Cu(I)-induced activation. <i>Journal of Biological Inorganic Chemistry</i> , 2009 , 14, 601-10	3.7	7
57	Synthesis and biological evaluation of a new trioxaquine containing a trioxane moiety obtained by halogenocyclisation of a hemiperoxyacetal. <i>Comptes Rendus Chimie</i> , 2003 , 6, 153-160	2.7	7
56	Alkylation of manganese(II) tetraphenylporphyrin by a synthetic antimalarial trioxane. <i>Organic and Biomolecular Chemistry</i> , 2003 , 1, 2859-64	3.9	7
55	Obtention of two anomers of imidazolone during the type I photosensitized oxidation of 2?-deoxyguanosine. <i>Journal of the Chemical Society Perkin Transactions 1</i> , 1999 , 1201-1206		7
54	Cytotoxic hybrid molecules thetalloporphyrin llipticine thaving a high affinity for DNA. <i>Journal of the Chemical Society Chemical Communications</i> , 1989 , 1711-1713		7
53	Dramatic enhancement of the photoactivity of zinc porphyrin lllipticine conjugates by DNA. <i>Journal of the Chemical Society Chemical Communications</i> , 1990 , 1131-1133		7
52	Peroxidase-catalysed oxidation of N2,N6-dimethyl-9-hydroxyellipticinium acetate. Evidence for the formation of an electrophilic quinone-iminium derivative. <i>Biochemical Pharmacology</i> , 1987 , 36, 2599-60)4 ⁶	7

51	Evidence for electrophilic properties of N2-methyl-9-hydroxy ellipticinium acetate (Celiptium) from human biliary metabolites. <i>Cancer Chemotherapy and Pharmacology</i> , 1985 , 15, 63-5	7
50	Magnetite Fe3O4 Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. <i>Angewandte Chemie</i> , 2018 , 130, 14974-14979	7
49	Characterization of Page Bands from 3?-Labeled Short DNA Fragments Resulting from Oxidative Cleavage by Mn-TMPyP/KHSO5□Drastic Modifications of Band Migrations by 5?-End Sugar Residues 1993 , 333-346	7
48	Catechol-Based Ligands as Potential Metal Chelators Inhibiting Redox Activity in Alzheimer's Disease. <i>European Journal of Inorganic Chemistry</i> , 2017 , 2017, 3198-3204	6
47	Is iron associated with amyloid involved in the oxidative stress of Alzheimer's disease?. <i>Comptes Rendus Chimie</i> , 2017 , 20, 987-989	6
46	Towards Antimalarial Hybrid Drugs 2012 , 423-439	6
45	Oxidation of tertiary diaryl alcohols catalyzed by a water-soluble metalloporphyrin: Caliphtaliphversus Caliphtar bond cleavage. <i>Chemical Communications</i> , 1997 , 2321-2322	6
44	Design, synthesis and cleaving activity of an abiotic nuclease based on a manganese(III) porphyrin complex bearing two acridine moieties. <i>Chemical Communications</i> , 1998 , 1343-1344	6
43	Incorporation of oxidized guanine nucleoside 5'-triphosphates in DNA with DNA polymerases and preparation of single-lesion carrying DNA. <i>Biochemistry</i> , 2008 , 47, 4788-99	6
42	Interaction of iron(II)-heme and artemisinin with a peptide mimic of Plasmodium falciparum HRP-II. Journal of Inorganic Biochemistry, 2007 , 101, 1739-47 4-2	6
41	Synthesis and stereochemical study of a trioxaquine prepared from cis-bicyclo?3.3.0?octane-3,7-dione. <i>Comptes Rendus Chimie</i> , 2002 , 5, 297-302	6
40	C10-Modified Artemisinin Derivatives: Efficient Heme-Alkylating Agents. <i>Angewandte Chemie</i> , 2005 , 117, 2096-2099	6
39	Radical mechanism of action of the artemisinin-type compounds. <i>Trends in Parasitology</i> , 2001 , 17, 267-2684	6
38	Asymmetric Biomimetic Oxidations 2000 , 543-562	6
37	Development of novel theranostic agents for in vivo amyloid imaging and protective effects on human neuroblastoma cells. <i>European Journal of Medicinal Chemistry</i> , 2019 , 181, 111585	5
36	Comment on Bree-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe2O4 (M = Fe, Ni, and Mn) Nanoparticles Journal of Physical Chemistry C, 2019 , 123, 28513-28514	5
35	The TDMQ Regulators of Copper Homeostasis Do Not Disturb the Activities of Cu,Zn-SOD, Tyrosinase, or the Colli Cofactor Vitamin B12. <i>European Journal of Inorganic Chemistry</i> , 2019 , 2019, 1384-21388	5
34	Hat die Chemie eine Zukunft bei therapeutischen Innovationen?. <i>Angewandte Chemie</i> , 2012 , 124, 8832-8§&7	4

33	The nonenzymatic activation of isoniazid by MnIII-pyrophosphate in the presence of NADH produces the inhibition of the enoyl-ACP reductase InhA from Mycobacterium tuberculosis. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry</i> , 2001 , 4, 35-40		4
32	From studies on artemisinin derivatives to trioxaquines. <i>Journal of Porphyrins and Phthalocyanines</i> , 2002 , 06, 271-273	1.8	4
31	Selektive Spaltung einer 35mer-Einzelstrang-DNA, die den Startcodon des TAT-Gens von HIV-1 enth l t, durch ein maßeschneidertes kationisches Manganporphyrin-Konjugat. <i>Angewandte Chemie</i> , 1993 , 105, 607-609	3.6	4
30	Phenothiazine-based theranostic compounds for in vivo near-infared fluorescence imaging of 軸myloid plaques and inhibition of A軸ggregation. <i>Dyes and Pigments</i> , 2019 , 171, 107744	4.6	3
29	Preliminary investigations of the effect of lipophilic analogues of the active metabolite of isoniazid toward bacterial and plasmodial strains. <i>Chemical Biology and Drug Design</i> , 2012 , 79, 1001-6	2.9	3
28	Preparation of cationic non-metallated or zinc-porphyrin-oligonucleotide fluorescent conjugates. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry</i> , 1998 , 1, 259-267		3
27	Selective Oxidation of 2?-Deoxyguanosine to Imidazolone by the Chemical Nuclease MnTMPyP Associated to KHSO5 or Sulfite/O2 <i>Nucleosides & Nucleotides</i> , 1999 , 18, 1061-1063		3
26	Hemoglobin-catalyzed transformation of elliptinium acetate into electrophilic species. Evidences for oxidative activation of the drug in human red blood cells. <i>Chemico-Biological Interactions</i> , 1988 , 65, 73-84	5	3
25	Activation of Hydrogen Peroxide with Biomimetic Systems. Catalysis By Metal Complexes, 1992, 153-17	7 5	3
24	2. SMALL MOLECULES: THE PAST OR THE FUTURE IN DRUG INNOVATION? 2019 , 17-48		3
23	Synthesis and characterization of copper-specific tetradendate ligands as potential treatment for Alzheimer's disease. <i>Comptes Rendus Chimie</i> , 2018 , 21, 475-483	2.7	2
22	Chemotherapie gegen Schistosomiasis. <i>Angewandte Chemie</i> , 2013 , 125, 8092-8114	3.6	2
21	Interaction of artemisinin (qinghaosu) with the tetraphenylporphyrinato-manganese(II) complex. <i>Comptes Rendus De LlAcadinie Des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy</i> , 1997 , 324, 59-66		2
20	Clip-phen conjugates for the specific cleavage of nucleic acids. <i>Nucleosides, Nucleotides and Nucleic Acids</i> , 2007 , 26, 927-30	1.4	2
19	Ribonucleoside Diphosphate Adducts with Elliptinium Acetate, an Antitumor Agent. <i>Nucleosides & Nucleotides</i> , 1987 , 6, 691-698		2
18	A One Step Synthesis of O6-Methyl-2?-deoxyguanosine. <i>Nucleosides & Nucleotides</i> , 1983 , 2, 459-464		2
17	Epoxide configuration in 3铀cetoxy-7台ydroxy-14,15-epoxy-apotirucallane prepared from tirucalla-7,24-dien-3-one. <i>Tetrahedron</i> , 1981 , 37, 2303-2306	2.4	2
16	Age and Alzheimer's Disease. <i>Nutrients</i> , 2016 , 8,	6.7	2

LIST OF PUBLICATIONS

15	Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents 1999 , 5, 3644	2
14	Synthesis and characterization of 8-aminoquinolines, substituted by electron donating groups, as high-affinity copper chelators for the treatment of Alzheimer's disease. <i>Comptes Rendus Chimie</i> , 2.7 2019 , 22, 419-427	1
13	Les molfiules hybrides comme stratgie de crfition de nouveaux agents anti-infectieux. <i>Comptes Rendus Chimie</i> , 2011 , 14, 400-405	1
12	Synthesis and characterization of manganese(III) complexes of a chiral disulfonamide ligand based on trans-1,2-diaminocyclohexane. <i>Polyhedron</i> , 1997 , 16, 2365-2368	1
11	Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzyme. ChemInform, 2004, 35, no	1
10	Oxidation of thioureas with potassium monopersulfate: an efficient method for their environmentally safe degradation. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry</i> , 2000, 3, 285-288	1
9	Carbon⊞ydrogen Bond Oxidations Catalyzed by Transition Metal Complexes173-192	1
8	Oxidation of 2,4,6-trichlorophenol catalyzed by iron phthalocyanines covalently bound to silica. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry</i> , 1999 , 2, 241-250	1
7	Synthesis and Antimalarial Activities of New Hybrid Atokel Molecules <i>ChemistryOpen</i> , 2022 , 11, e20220@064	1
6	Oxygenation Reactions Catalyzed by Supported Sulfonated Metalloporphyrins. <i>ACS Symposium Series</i> , 1993 , 58-66	O
5	Oxidation of guanine bases mediated by a manganese-porphyrin-oligonucleotide conjugate onto a G-rich DNA target: 8-oxo-7,8-dihydroguanine is not the major lesion. <i>Comptes Rendus De LlAcademie Des Sciences - Series Ilc: Chemistry</i> , 1998 , 1, 725-736	
4	Heme as Trigger and Target of the Antimalarial Peroxide Artemisinin. ACS Symposium Series, 2005, 281-29.4	
3	Second generation of a polypyridine ligand to mimic enzymes containing non-heme iron centers. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry</i> , 2000 , 3, 735-741	
2	Origin of the oxygen atom in metalloporphyrin-catalyzed epoxidations with LiOCl as oxidant. <i>Comptes Rendus De LlAcademie Des Sciences - Series IIc: Chemistry,</i> 2000 , 3, 771-775	
1	X-Ray diffraction structure of Cu(II) and Zn(II) complexes of 8-aminoquinoline derivatives (TDMQ), related to the activity of these chelators as potential drugs against Alzheimer's disease. <i>Journal of Molecular Structure</i> , 2022 , 1251, 132078	