List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8234660/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzymes. Chemical Reviews, 2004, 104, 3947-3980.	47.7	2,048
2	Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chemical Reviews, 1992, 92, 1411-1456.	47.7	2,031
3	Hybrid Molecules with a Dual Mode of Action: Dream or Reality?. Accounts of Chemical Research, 2008, 41, 69-77.	15.6	795
4	100 Years of Baeyer–Villiger Oxidations. European Journal of Organic Chemistry, 1999, 1999, 737-750.	2.4	486
5	Carbon—Hydrogen Bonds of DNA Sugar Units as Targets for Chemical Nucleases and Drugs. Angewandte Chemie International Edition in English, 1995, 34, 746-769.	4.4	411
6	DNA And RNA Cleavage by Metal Complexes. Advances in Inorganic Chemistry, 1998, , 251-312.	1.0	326
7	Efficient Oxidative Dechlorination and Aromatic Ring Cleavage of Chlorinated Phenols Catalyzed by Iron Sulfophthalocyanine. Science, 1995, 268, 1163-1166.	12.6	314
8	Potassium monopersulfate and a water-soluble manganese porphyrin complex, [Mn(TMPyP)](OAc)5, as an efficient reagent for the oxidative cleavage of DNA. Biochemistry, 1989, 28, 7268-7275.	2.5	308
9	From Mechanistic Studies on Artemisinin Derivatives to New Modular Antimalarial Drugs. Accounts of Chemical Research, 2002, 35, 167-174.	15.6	280
10	Oxidation of Pollutants Catalyzed by Metallophthalocyanines. Accounts of Chemical Research, 1997, 30, 470-476.	15.6	250
11	Sodium hypochlorite: a convenient oxygen source for olefin epoxidation catalyzed by (porphyrinato)manganese complexes. Journal of the American Chemical Society, 1984, 106, 6668-6676.	13.7	233
12	Synthesis and Characterization of New Chiral Schiff Base Complexes with Diiminobinaphthyl or Diiminocyclohexyl Moieties as Potential Enantioselective Epoxidation Catalysts. Inorganic Chemistry, 1996, 35, 387-396.	4.0	222
13	Metal Ions in Alzheimer's Disease: A Key Role or Not?. Accounts of Chemical Research, 2019, 52, 2026-2035.	15.6	216
14	Possible modes of action of the artemisinin-type compounds. Trends in Parasitology, 2001, 17, 122-126.	3.3	207
15	Biomimetic Oxidations Catalyzed by Transition Metal Complexes. , 2000, , .		204
16	Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents. Chemistry - A European Journal, 1999, 5, 3644-3650.	3.3	189
17	A G-Quadruplex Ligand with 10000-Fold Selectivity over Duplex DNA. Journal of the American Chemical Society, 2007, 129, 1502-1503.	13.7	188
18	"Redox Tautomerism" in High-Valent Metal-oxo-aquo Complexes. Origin of the Oxygen Atom in Epoxidation Reactions Catalyzed by Water-Soluble Metalloporphyrins. Journal of the American Chemical Society, 1994, 116, 9375-9376.	13.7	183

#	Article	IF	CITATIONS
19	Epoxidation of olefins by cytochrome P-450 model compounds: kinetics and stereochemistry of oxygen atom transfer and origin of shape selectivity. Journal of the American Chemical Society, 1985, 107, 2000-2005.	13.7	175
20	Regulation of Copper and Iron Homeostasis by Metal Chelators: A Possible Chemotherapy for Alzheimer's Disease. Accounts of Chemical Research, 2015, 48, 1332-1339.	15.6	174
21	Dendrimeric coating of glass slides for sensitive DNA microarrays analysis. Nucleic Acids Research, 2003, 31, 88e-88.	14.5	172
22	Cationic phosphorus-containing dendrimers reduce prion replication both in cell culture and in mice infected with scrapie. Journal of General Virology, 2004, 85, 1791-1799.	2.9	172
23	CO2as the Ultimate Degradation Product in the H2O2Oxidation of 2,4,6-Trichlorophenol Catalyzed by Iron Tetrasulfophthalocyanine. Journal of the American Chemical Society, 1996, 118, 7410-7411.	13.7	171
24	The antimalarial drug artemisinin alkylates heme in infected mice. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 13676-13680.	7.1	167
25	Is alkylation the main mechanism of action of the antimalarial drug artemisinin?. Chemical Society Reviews, 1998, 27, 273.	38.1	154
26	Heme as Trigger and Target for Trioxane-Containing Antimalarial Drugs. Accounts of Chemical Research, 2010, 43, 1444-1451.	15.6	152
27	Trioxaquines Are New Antimalarial Agents Active on All Erythrocytic Forms, Including Gametocytes. Antimicrobial Agents and Chemotherapy, 2007, 51, 1463-1472.	3.2	145
28	Preparation and Antimalarial Activities of "Trioxaquinesâ€, New Modular Molecules with a Trioxane Skeleton Linked to a 4-Aminoquinoline. ChemBioChem, 2000, 1, 281-283.	2.6	144
29	Guanine Oxidation: One- and Two-Electron Reactions. Chemistry - A European Journal, 2006, 12, 6018-6030.	3.3	143
30	â€~Oxo-hydroxo tautomerism' as useful mechanistic tool in oxygenation reactions catalysed by water-soluble metalloporphyrins. Chemical Communications, 1998, , 2167-2173.	4.1	141
31	Mechanistic studies on DNA damage by minor groove binding copper-phenanthroline conjugates. Nucleic Acids Research, 2005, 33, 5371-5379.	14.5	137
32	Olefin epoxidation and alkane hydroxylation catalyzed by robust sulfonated manganese and iron porphyrins supported on cationic ion-exchange resins. Inorganic Chemistry, 1992, 31, 1999-2006.	4.0	135
33	Characterization of the Alkylation Product of Heme by the Antimalarial Drug Artemisinin. Angewandte Chemie - International Edition, 2001, 40, 1954-1957.	13.8	135
34	Selection of a trioxaquine as an antimalarial drug candidate. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17579-17584.	7.1	135
35	Intramolecular kinetic isotope effects in alkane hydroxylations catalyzed by manganese and iron porphyrin complexes. Journal of the American Chemical Society, 1993, 115, 7293-7299.	13.7	134
36	Oxidation at Carbon-1' of DNA Deoxyriboses by the Mn-TMPyP/KHSO5 System Results from a Cytochrome P-450-type Hydroxylation Reaction. Journal of the American Chemical Society, 1995, 117, 2935-2936.	13.7	127

#	Article	IF	CITATIONS
37	Characterization of the First Covalent Adduct between Artemisinin and a Heme Model. Journal of the American Chemical Society, 1997, 119, 5968-5969.	13.7	127
38	Synthesis and Antimalarial Activity of Trioxaquine Derivatives. Chemistry - A European Journal, 2004, 10, 1625-1636.	3.3	127
39	Oxidative Degradation of Aromatic Pollutants by Chemical Models of Ligninase Based on Porphyrin Complexes. Angewandte Chemie International Edition in English, 1990, 29, 1471-1473.	4.4	123
40	Porphyrin Derivatives for Telomere Binding and Telomerase Inhibition. ChemBioChem, 2005, 6, 123-132.	2.6	120
41	Structures of Fe(II) Complexes withN,N,Nâ€~-Tris(2-pyridylmethyl)ethane-1,2-diamine Type Ligands. Bleomycin-like DNA Cleavage and Enhancement by an Alkylammonium Substituent on the Nâ€~ Atom of the Ligand. Inorganic Chemistry, 1999, 38, 1085-1092.	4.0	116
42	Preparation and Study of New Polyâ€8â€Hydroxyquinoline Chelators for an antiâ€Alzheimer Strategy. Chemistry - A European Journal, 2008, 14, 682-696.	3.3	116
43	Schistosomiasis Chemotherapy. Angewandte Chemie - International Edition, 2013, 52, 7936-7956.	13.8	114
44	Metalloporphyrin-Catalyzed Oxidation of 2-Methylnaphthalene to Vitamin K3and 6-Methyl-1,4-naphthoquinone by Potassium Monopersulfate in Aqueous Solution. Journal of Organic Chemistry, 1997, 62, 673-678.	3.2	111
45	Biomimetic Chemical Catalysts in the Oxidative Activation of Drugs. Advanced Synthesis and Catalysis, 2004, 346, 171-184.	4.3	111
46	Alkylation of heme by the antimalarial drug artemisinin. Chemical Communications, 2002, , 414-415.	4.1	110
47	Mechanisms of DNA cleavage by copper complexes of 3-Clip-Phen and of its conjugate with a distamycin analogue. Nucleic Acids Research, 2000, 28, 4856-4864.	14.5	109
48	CHEMISTRY: Catalytic Degradation of Chlorinated Phenols. Science, 2002, 296, 270-271.	12.6	107
49	Preparation, characterization and crystal structures of manganese(II), iron(III) and copper(II) complexes of the bis[di-1,1-(2-pyridyI)ethyl]amine (BDPEA) ligand; evaluation of their DNA cleavage activities. Journal of Biological Inorganic Chemistry, 2001, 6, 14-22.	2.6	105
50	Highly Selective Bromination of Tetramesitylporphyrin: An Easy Access to Robust Metalloporphyrins, M-Br8TMP and M-Br8TMPS. Examples of application in catalytic oxygenation and oxidation reactions Tetrahedron Letters, 1990, 31, 1991-1994.	1.4	101
51	Trioxaferroquines as New Hybrid Antimalarial Drugs. Journal of Medicinal Chemistry, 2010, 53, 4103-4109.	6.4	101
52	Oxidative Degradation of Polychlorinated Phenols Catalyzed by Metallosulfophthalocyanines. Chemistry - A European Journal, 1996, 2, 1308-1317.	3.3	100
53	Sequential addition of H2O2, pH and solvent effects as key factors in the oxidation of 2,4,6-trichlorophenol catalyzed by iron tetrasulfophthalocyanine. New Journal of Chemistry, 1998, 22, 45-51.	2.8	100
54	Factors controlling the reactivity of a ligninase model based on the association of potassium monopersulfate to manganese and iron porphyrin complexes. Journal of Organic Chemistry, 1989, 54, 5008-5011.	3.2	98

#	Article	IF	CITATIONS
55	Catalase modeling with metalloporphyrin complexes having an oxygen ligand in a proximal position. Comparison with complexes containing a proximal nitrogen. Inorganic Chemistry, 1991, 30, 706-711.	4.0	93
56	Efficient Oxidation of 2â€~-Deoxyguanosine by Mn-TMPyP/KHSO5to Imidazolone dIz without Formation of 8-Oxo-dG. Journal of the American Chemical Society, 1998, 120, 11548-11553.	13.7	91
57	DNA cleavage studies of mononuclear and dinuclear copper(II) complexes with benzothiazolesulfonamide ligands. Journal of Biological Inorganic Chemistry, 2003, 8, 644-652.	2.6	88
58	Guanine Oxidation in Double-Stranded DNA by Mn-TMPyP/KHSO5:  5,8-Dihydroxy-7,8-dihydroguanine Residue as a Key Precursor of Imidazolone and Parabanic Acid Derivatives. Journal of the American Chemical Society, 2000, 122, 2157-2167.	13.7	87
59	A Minor Groove Binding Copper-Phenanthroline Conjugate Produces Direct Strand Breaks via β-Elimination of 2-Deoxyribonolactone. Journal of the American Chemical Society, 2002, 124, 9062-9063.	13.7	86
60	Dendrislides, dendrichips: a simple chemical functionalization of glass slides with phosphorus dendrimers as an effective means for the preparation of biochips. New Journal of Chemistry, 2003, 27, 1713-1719.	2.8	86
61	Furfural as a Marker of DNA Cleavage by Hydroxylation at the 5′ Carbon of Deoxyribose. Angewandte Chemie International Edition in English, 1991, 30, 702-704.	4.4	81
62	A new catalytic route for the epoxidation of styrene with sodium hypochlorite activated by transition metal complexes. Tetrahedron Letters, 1980, 21, 4449-4450.	1.4	78
63	Targeting of a hydrophilic photosensitizer by use of internalizing monoclonal antibodies: A new possibility for use in photodynamic therapy. International Journal of Cancer, 2000, 88, 108-114.	5.1	78
64	Epoxidation of olefins by cytochrome P-450 model compounds: mechanism of oxygen atom transfer Proceedings of the National Academy of Sciences of the United States of America, 1984, 81, 3245-3248.	7.1	77
65	MECHANISM OF DNA CLEAVAGE MEDIATED BY PHOTOEXCITED NONâ€STEROIDAL ANTIINFLAMMATORY DRUGS. Photochemistry and Photobiology, 1991, 54, 205-213.	2.5	77
66	Mn(III) Pyrophosphate as an Efficient Tool for Studying the Mode of Action of Isoniazid on the InhA Protein of Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 2002, 46, 2137-2144.	3.2	77
67	How to Define a Nanozyme. ACS Nano, 2022, 16, 6956-6959.	14.6	76
68	Active Iron-Oxo and Iron-Peroxo Species in Cytochromes P450 and Peroxidases; Oxo-Hydroxo Tautomerism with Water-Soluble Metalloporphyrins. , 2000, , 1-35.		75
69	Copper Chelator Induced Efficient Episodic Memory Recovery in a Non-Transgenic Alzheimer's Mouse Model. PLoS ONE, 2012, 7, e43105.	2.5	75
70	From classical antimalarial drugs to new compounds based on the mechanism of action of artemisinin. Pure and Applied Chemistry, 2001, 73, 1173-1188.	1.9	74
71	Efficient H2O2 oxidation of chlorinated phenols catalysed by supported iron phthalocyanines. Journal of the Chemical Society Chemical Communications, 1994, , 1799.	2.0	72
72	Proximal effect of the nitrogen ligands in the catalytic epoxidation of olefins by the sodium hypochlorite/manganese(III) porphyrin system. Inorganic Chemistry, 1988, 27, 161-164.	4.0	71

#	Article	IF	CITATIONS
73	Mechanism of DNa cleavage by cationic manganese porphyrins: hydroxylations at the 1′- Carbon and 5′-carbon atoms of deoxyriboses as initial damages. Nucleic Acids Research, 1991, 19, 6283-6288.	14.5	70
74	Alkylating Properties of Antimalarial Artemisinin Derivatives and Synthetic Trioxanes when Activated by a Reduced Heme Model. Chemistry - A European Journal, 1998, 4, 1287-1296.	3.3	70
75	Structure/Nuclease Activity Relationships of DNA Cleavers Based on Cationic Metalloporphyrinâ^'Oligonucleotide Conjugates. Biochemistry, 1996, 35, 9140-9149.	2.5	69
76	Preparation of the New Bis(phenanthroline) Ligand "Clip-Phen―and Evaluation of the Nuclease Activity of the Corresponding Copper Complex. Inorganic Chemistry, 1998, 37, 3486-3489.	4.0	69
77	A Fast and Efficient Metal-Mediated Oxidation of Isoniazid and Identification of Isoniazid-NAD(H) Adducts. ChemBioChem, 2001, 2, 877-883.	2.6	67
78	Oxygenation of hydrocarbons by cytochrome P-450 model compounds: modification of reactivity by axial ligands Proceedings of the National Academy of Sciences of the United States of America, 1983, 80, 7039-7041.	7.1	66
79	Oxidation of Polycyclic Aromatic Hydrocarbons Catalyzed by Iron Tetrasulfophthalocyanine FePcS: Inverse Isotope Effects and Oxygen Labeling Studies. European Journal of Inorganic Chemistry, 1998, 1998, 1269-1281.	2.0	66
80	Potential antitumor agents: synthesis and biological properties of aliphatic amino acid 9-hydroxyellipticinium derivatives. Journal of Medicinal Chemistry, 1984, 27, 1161-1166.	6.4	65
81	In Vitro Activities of DU-1102, a New Trioxaquine Derivative, against Plasmodium falciparum Isolates. Antimicrobial Agents and Chemotherapy, 2001, 45, 1886-1888.	3.2	65
82	Alkylating Capacity and Reaction Products of Antimalarial Trioxanes after Activation by a Heme Model. Journal of Organic Chemistry, 2002, 67, 609-619.	3.2	65
83	New Approach for the Preparation of Efficient DNA Cleaving Agents:  Ditopic Copperâ^'Platinum Complexes Based on 3-Clip-Phen and Cisplatin. Journal of Medicinal Chemistry, 2007, 50, 3148-3152.	6.4	64
84	Preferential hydroxylation by the chemical nuclease meso-tetrakis-(4-N-methylpyridiniumyl)porphyrinatomanganeselll pentaacetate/KHSO5 at the 5' carbon of deoxyriboses on both 3' sides of three contiguous A.T base pairs in short double-stranded oligonucleotides Proceedings of the National Academy of Sciences of the United States of America,	7.1	63
85	1992, 89, 3967-3971. Enhanced selectivity by an †open-well effect' in a metalloporphyrin-catalysed oxygenation reaction. Journal of the Chemical Society Perkin Transactions II, 1984, , 1967-1970.	0.9	62
86	Synthesis of cationic metalloporphyrin precursors related to the design of DNA cleavers. Journal of Organic Chemistry, 1993, 58, 2913-2917.	3.2	61
87	Targeting the DNA Cleavage Activity of Copper Phenanthroline and Clip-Phen to A·T Tracts via Linkage to a Poly-N-methylpyrrole. Bioconjugate Chemistry, 2000, 11, 892-900.	3.6	61
88	Metallophthalocyanine-catalyzed oxidation of catechols by H2O2 and its surrogates. Journal of Molecular Catalysis A, 1997, 117, 103-114.	4.8	59
89	Improvement of Porphyrin Cellular Delivery and Activity by Conjugation to a Carrier Peptide. Bioconjugate Chemistry, 2001, 12, 691-700.	3.6	59
90	Trioxaquines and Heme-Artemisinin Adducts Inhibit the In Vitro Formation of Hemozoin Better than Chloroquine. Antimicrobial Agents and Chemotherapy, 2007, 51, 3768-3770.	3.2	59

#	Article	IF	CITATIONS
91	Role of pyridine in the catalytic activation of sodium hypochlorite in the presence of manganese porphyrin. Tetrahedron Letters, 1982, 23, 2449-2452.	1.4	58
92	Characterization of New Specific Copper Chelators as Potential Drugs for the Treatment of Alzheimer's Disease. Chemistry - A European Journal, 2014, 20, 6771-6785.	3.3	57
93	Development of Phenothiazine-Based Theranostic Compounds That Act Both as Inhibitors of β-Amyloid Aggregation and as Imaging Probes for Amyloid Plaques in Alzheimer's Disease. ACS Chemical Neuroscience, 2017, 8, 798-806.	3.5	57
94	Nonenzymic cleavage and ligation of DNA at a three A.cntdot.T base pair site. A two-step pseudohydrolysis of DNA. Journal of the American Chemical Society, 1993, 115, 7939-7943.	13.7	56
95	Synthesis of New Macrocyclic Chiral Manganese(III) Schiff Bases as Catalysts for Asymmetric Epoxidation. Journal of Organic Chemistry, 2006, 71, 1449-1457.	3.2	55
96	DNA Cleavage by Copper Complexes of 2- and 3-Clip-Phen Derivatives. European Journal of Inorganic Chemistry, 2003, 2003, 528-540.	2.0	53
97	Oxidative Damage Generated by an Oxo-Metalloporphyrin onto the Human Telomeric Sequenceâ€. Biochemistry, 2000, 39, 9514-9522.	2.5	52
98	Title is missing!. Topics in Catalysis, 2002, 21, 47-54.	2.8	52
99	Porphyrin–aminoquinoline conjugates as telomerase inhibitors. Organic and Biomolecular Chemistry, 2003, 1, 921-927.	2.8	51
100	Oxone as oxygen donor in the catalytic hydroxylation of saturated hydrocarbons. Tetrahedron Letters, 1985, 26, 4459-4462.	1.4	50
101	Bis-8-hydroxyquinoline ligands as potential anti-Alzheimer agents. New Journal of Chemistry, 2007, 31, 193.	2.8	50
102	DNA Binding and Cleavage by a Cationic Manganese Porphyrinâ^'Peptide Nucleic Acid Conjugate. Bioconjugate Chemistry, 1997, 8, 267-270.	3.6	47
103	Hydroxylation, Epoxidation, and DNA Cleavage Reactions Mediated by the Biomimetic Mn-TMPyP/O2/Sulfite Oxidation Systemâ€. Inorganic Chemistry, 1999, 38, 4123-4127.	4.0	47
104	The Ligand 1,10-Phenanthroline-2,9-dicarbaldehyde Dioxime can Act Both as a Tridentate and as a Tetradentate Ligand â^' Synthesis, Characterization and Crystal Structures of its Transition Metal Complexes. European Journal of Inorganic Chemistry, 2000, 2000, 1985-1996.	2.0	47
105	The key role of heme to trigger the antimalarial activity of trioxanes. Coordination Chemistry Reviews, 2005, 249, 1927-1936.	18.8	47
106	Metalloporphyrin-catalysed epoxidation of terminal aliphatic olefins with hypochlorite salts or potassium hydrogen persulphate. Journal of the Chemical Society Perkin Transactions II, 1985, , 1735.	0.9	46
107	Preparation and crystal structure of Ï€-cyclopentadienyl-1,2-bis(diphenylphosphino)ethaneironmagnesium bromide tris(tetrahydrofuran), a transition–metal Grignard reagent. Journal of the Chemical Society Chemical Communications, 1974, , 44-44.	2.0	45
108	Anti-human immunodeficiency virus effects of cationic metalloporphyrin-ellipticine complexes. Biochemical Pharmacology, 1992, 44, 1675-1679.	4.4	45

#	Article	IF	CITATIONS
109	Origin of the Oxygen Atom in Câ^'H Bond Oxidations Catalyzed by a Water-Soluble Metalloporphyrin. Inorganic Chemistry, 1997, 36, 3488-3492.	4.0	45
110	C10-Modified Artemisinin Derivatives: Efficient Heme-Alkylating Agents. Angewandte Chemie - International Edition, 2005, 44, 2060-2063.	13.8	45
111	In Vitro Activities of Trioxaquines against <i>Schistosoma mansoni</i> . Antimicrobial Agents and Chemotherapy, 2009, 53, 4903-4906.	3.2	45
112	Preparation et proprietes chimiques de l′inorganomagnesien Cp(DPPE)FeMgBr. Journal of Organometallic Chemistry, 1978, 146, 151-167.	1.8	44
113	DNA strand breaks photosensitized by benoxaprofen and other non steroidal antiinflammatory agents. Biochemical Pharmacology, 1990, 39, 407-413.	4.4	44
114	Synthesis of Two Acridine Conjugates of the Bis(phenanthroline) Ligand "Clip-Phen―and Evaluation of the Nuclease Activity of the Corresponding Copper Complexes. European Journal of Inorganic Chemistry, 1999, 1999, 557-563.	2.0	43
115	Preparation and Crystal Structures of Manganese, Iron, and Cobalt Complexes of the Bis[di(2-pyridyl)methyl]amine (bdpma) Ligand and Its Oxidative Degradation Product 1,3,3-Tris(2-pyridyl)-3H-imidazo[1,5-a]pyridin-4-ium (tpip); Origin of the bdpma Fragility. Chemistry - A Furopean Journal 1999 5 1766-1774	3.3	43
116	Guanine Oxidation: NMR Characterization of a Dehydro-guanidinohydantoin Residue Generated by a 2e-oxidation of d(GpT). Journal of the American Chemical Society, 2001, 123, 5867-5877.	13.7	43
117	Oxidative cleavage of DNA mediated by hybrid metalloporphyrin-ellipticine molecules and functionalized metalloporphyrin precursors. Biochemistry, 1990, 29, 7868-7875.	2.5	42
118	Kinetic investigations of oxidative degradation of aromatic pollutant 2,4,6-trichlorophenol by an iron-porphyrin complex, a model of ligninase. Journal of Molecular Catalysis A, 1996, 113, 45-49.	4.8	42
119	Metallophthalocyanines Linked to Organic Copolymers as Efficient Oxidative Supported Catalysts. European Journal of Inorganic Chemistry, 2001, 2001, 1775-1783.	2.0	42
120	Platinated Copper(3 lipâ€Phen) Complexes as Effective DNA leaving and Cytotoxic Agents. Chemistry - A European Journal, 2008, 14, 3418-3426.	3.3	42
121	Structures of the Copper and Zinc Complexes of PBT2, a Chelating Agent Evaluated as Potential Drug for Neurodegenerative Diseases. European Journal of Inorganic Chemistry, 2017, 2017, 600-608.	2.0	41
122	Magnetite Fe ₃ O ₄ Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. Angewandte Chemie - International Edition, 2018, 57, 14758-14763.	13.8	41
123	Selective Cleavage of a 35-mer Single-Stranded DNA Containing the Initiation Codon of the TAT Gene of HIV-1 by a Tailored Cationic Manganese Porphyrin. Angewandte Chemie International Edition in English, 1993, 32, 557-559.	4.4	40
124	Preparation of a Spermine Conjugate of the Bis-phenanthroline Ligand Clip-Phen and Evaluation of the Corresponding Copper Complex. Bioconjugate Chemistry, 1998, 9, 604-611.	3.6	40
125	In Vitro and In Vivo Potentiation of Artemisinin and Synthetic Endoperoxide Antimalarial Drugs by Metalloporphyrins. Antimicrobial Agents and Chemotherapy, 2000, 44, 2836-2841.	3.2	40
126	Synthesis of "Trioxaquantelâ€ [®] Derivatives as Potential New Antischistosomal Drugs. European Journal of Organic Chemistry, 2008, 2008, 895-913.	2.4	40

#	Article	IF	CITATIONS
127	The Antimalarial Trioxaquine DU1301 Alkylates Heme in Malaria-Infected Mice. Antimicrobial Agents and Chemotherapy, 2008, 52, 2966-2969.	3.2	40
128	Catalytic epoxidation of aliphatic terminal olefins with sodium hypochlorite. Tetrahedron Letters, 1984, 25, 1895-1896.	1.4	39
129	Dramatic increase of the DNA cleavage activity of Cu(Clip-phen) by fixing the bridging linker on the C3 position of the phenanthroline units. Chemical Communications, 1998, , 2597-2598.	4.1	39
130	Syntheses and in vitro evaluation of water-soluble "cationic metalloporphyrin-ellipticine" molecules having a high affinity for DNA. Journal of Medicinal Chemistry, 1991, 34, 900-906.	6.4	38
131	A macrocyclic chiral manganese(III) Schiff base complex as an efficient catalyst for the asymmetric epoxidation of olefins. Journal of Catalysis, 2005, 234, 250-255.	6.2	38
132	Microstructured Liposome Array. Bioconjugate Chemistry, 2006, 17, 245-247.	3.6	38
133	Antischistosomal Activity of Trioxaquines: In Vivo Efficacy and Mechanism of Action on Schistosoma mansoni. PLoS Neglected Tropical Diseases, 2012, 6, e1474.	3.0	38
134	Preparation of Tetradentate Copper Chelators as Potential Antiâ€Alzheimer Agents. ChemMedChem, 2018, 13, 684-704.	3.2	38
135	NMR characterization of covalent adducts obtained by alkylation of heme with the antimalarial drug artemisinin. Inorganica Chimica Acta, 2002, 339, 488-496.	2.4	37
136	Alkylation of human hemoglobin A0by the antimalarial drug artemisinin. FEBS Letters, 2004, 556, 245-248.	2.8	37
137	Isolation of a high-valent â€~oxo-like' manganese porphyrin complex obtained from NaOCl oxidation. Journal of the Chemical Society Chemical Communications, 1983, .	2.0	36
138	o-Quinone formation in the biochemical oxidation of the antitumor drug N2-methyl-9-hydroxyellipticinium acetate. Journal of Medicinal Chemistry, 1983, 26, 574-579.	6.4	36
139	Preparation of hybrid "DNA cleaver-oligodeoxyribonulceotide" molecules based on a metallotris (methylpyridiniumyl)porphyrin motif. Bioconjugate Chemistry, 1993, 4, 366-371.	3.6	36
140	Characterization of the Main Radical and Products Resulting from a Reductive Activation of the Antimalarial Arteflene (Ro 42â^1611). Journal of Organic Chemistry, 1999, 64, 6776-6781.	3.2	36
141	Key Role of the Phosphate Buffer in the H2O2 Oxidation of Aromatic Pollutants Catalyzed by Iron Tetrasulfophthalocyanine. Journal of Catalysis, 2001, 202, 177-186.	6.2	36
142	Development of isoniazid–NAD truncated adducts embedding a lipophilic fragment as potential bi-substrate InhA inhibitors and antimycobacterial agents. European Journal of Medicinal Chemistry, 2010, 45, 4554-4561.	5.5	36
143	Ozone epoxidation of olefins catalyzed by highly robust manganese and iron porphyrin complexes. Journal of Organic Chemistry, 1991, 56, 3725-3727.	3.2	35
144	Cleavage of double-stranded DNA by â€~metalloporphyrin-linker oligonucleotide' molecules: influence of the linker. Nucleic Acids Research, 1995, 23, 3894-3900.	14.5	35

#	Article	IF	CITATIONS
145	Preparation and nuclease activity of hybrid "metallotris(methylpyridinium)porphyrin oligonucleotide" molecules having a 3'-loop for protection against 3'-exonucleases. Bioconjugate Chemistry, 1995, 6, 466-472.	3.6	35
146	Manganese(III) Porphyrin Catalysts for the Oxidation of Terpene Derivatives: A Comparative Study. Journal of Catalysis, 2002, 206, 349-357.	6.2	35
147	Evidences for an efficient demethylation of methoxyellipticine derivatives catalyzed by a peroxidase. Journal of the American Chemical Society, 1985, 107, 2558-2560.	13.7	34
148	Peroxidase-catalyzed covalent binding of the antitumor drug N2-methyl-9-hydroxyellipticinium to DNA in vitro. Biochemistry, 1986, 25, 1240-1245.	2.5	34
149	Docking Studies of Structurally Diverse Antimalarial Drugs Targeting PfATP6: No Correlation between inâ€silico Binding Affinity and inâ€vitro Antimalarial Activity ChemMedChem, 2009, 4, 1469-1479.	3.2	34
150	Catalytic hydroxylation of saturated hydrocarbons with the sodium hypohalite/manganese porphyrin system. Journal of Molecular Catalysis, 1985, 31, 221-224.	1.2	33
151	Iron-Phthalocyanine Catalyzed Epoxidation of Olefins by KHSO5. Journal of Molecular Catalysis, 1988, 44, 187-190.	1.2	33
152	The First Chemical Synthesis of the Core Structure of the Benzoylhydrazineâ^'NAD Adduct, a Competitive Inhibitor of theMycobacterium tuberculosisEnoyl Reductase. Journal of Organic Chemistry, 2005, 70, 10502-10510.	3.2	33
153	Reaction d′homocouplage du type kharasch catalysee par des complexes du fer. Journal of Organometallic Chemistry, 1978, 146, 169-178.	1.8	32
154	Evidence for high-valent iron-oxo species active in the DNA breaks mediated by iron-bleomycin. Biochemical Pharmacology, 1989, 38, 133-140.	4.4	32
155	Oxidative degradation of cationic metalloporphyrins in the presence of nucleic acids: a way to binding constants?. Bioconjugate Chemistry, 1991, 2, 201-206.	3.6	32
156	Cytostatic Activity of 1,10-Phenanthroline Derivatives Generated by the Clip-Phen Strategy. ChemBioChem, 2005, 6, 686-691.	2.6	32
157	Heme Alkylation by Artesunic Acid and Trioxaquine DU1301, Two Antimalarial Trioxanes. ChemBioChem, 2005, 6, 653-658.	2.6	32
158	Unexpected regiospecific alkylation of the antitumor agent N2-methyl-9-hydroxyellipticinium acetate with N, O or S donors. Tetrahedron Letters, 1983, 24, 365-368.	1.4	31
159	On the chemical nature of DNA and RNA modification by a hemin model system. Biochemistry, 1990, 29, 4783-4789.	2.5	31
160	Characterization of a 5â€~-Aldehyde Terminus Resulting from the Oxidative Attack at C5â€~ of a 2-Deoxyribose on DNA. Chemical Research in Toxicology, 2001, 14, 1413-1420.	3.3	31
161	Guanine Oxidation by Electron Transfer: One- versus Two-Electron Oxidation Mechanism. ChemBioChem, 2006, 7, 125-133.	2.6	31
162	DNA cleavage and binding selectivity of a heterodinuclear Pt–Cu(3-Clip-Phen) complex. Journal of Biological Inorganic Chemistry, 2008, 13, 575-586.	2.6	31

#	Article	IF	CITATIONS
163	Aspects of metalloporphyrin-catalyzed oxygenation of hydrocarbons with anionic single oxygen donors, NaOCl and KHSO5. Journal of Molecular Catalysis, 1987, 41, 185-195.	1.2	30
164	Magnesium monoperoxophtalate: An efficient single oxygen atom donor in DNA cleavage catalyzed by metalloporphyrin. Biochemical and Biophysical Research Communications, 1989, 160, 1212-1218.	2.1	30
165	Die CHâ€Bindungen der Zuckerbausteine von DNA als Angriffspunkte für chemische Nucleasen und Wirkstoffe. Angewandte Chemie, 1995, 107, 819-845.	2.0	30
166	Characterization of the Dehydro-Guanidinohydantoin Oxidation Product of Guanine in a Dinucleotide. Chemical Research in Toxicology, 2002, 15, 1643-1651.	3.3	30
167	First example of a chloroperoxidase-type chlorination of dimedone using a supported manganese porphyrin catalyst. Journal of the Chemical Society Chemical Communications, 1990, , 1414.	2.0	29
168	A straightforward preparation of primary alkyl triflates and their utility in the synthesis of derivatives of ethidium. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 571-574.	1.3	29
169	Ultrasmall superparamagnetic iron oxide nanoparticles-bound NIR dyes: Novel theranostic agents for Alzheimer's disease. Dyes and Pigments, 2020, 173, 107968.	3.7	29
170	Theoretical study of the interaction between a high-valent manganese porphyrin oxyl-(hydroxo)-Mn(IV)-TMPyP and double-stranded DNA. Journal of Computational Chemistry, 2003, 24, 797-805.	3.3	28
171	Preparation of New Bis(8â€aminoquinoline) Ligands and Comparison with Bis(8â€hydroxyquinoline) Ligands on Their Ability to Chelate Cu ^{II} and Zn ^{II} . European Journal of Inorganic Chemistry, 2008, 2008, 5622-5631.	2.0	28
172	Stereochemical arguments against a possible chlorohydrin route in the catalytic epoxidation of olefins with NaOCl/Mn-porphyrins. Tetrahedron Letters, 1983, 24, 3621-3624.	1.4	27
173	Horseradish peroxidase: a useful tool for modeling the extra-hepatic biooxidation of exogens. Biochimie, 1987, 69, 3-9.	2.6	27
174	Nuclease Activity and Binding Characteristics of a Cationic "Manganese Porphyrinâ^'Bis(benzimidazole) Dye (Hoechst 33258)―Conjugate. Bioconjugate Chemistry, 1997, 8, 222-231.	3.6	27
175	Sulfonated and acetamidosulfonylated tetraarylporphyrins as biomimetic oxidation catalysts under aqueous conditions. Inorganica Chimica Acta, 1998, 272, 228-234.	2.4	27
176	Spontaneous Reduction of Mixed 2,2′-Bipyridine/Methylamine/Chloro Complexes of PtIV in Water in the Presence of Light Is Accompanied by Complex Isomerization, Loss of Methylamine, and Formation of a Strong Oxidant, Presumably HOCI. Chemistry - A European Journal, 2007, 13, 3980-3988.	3.3	27
177	Definitive evidence for a proximal effect of pyridine in the NaOCl/Mn(porphyrin)x / pyridine catalytic oxygenation system. Tetrahedron Letters, 1984, 25, 5773-5776.	1.4	26
178	Oxidative degradation of chlorinated phenols catalyzed by a non-heme iron(III) complex. Journal of Molecular Catalysis A, 1999, 137, 205-212.	4.8	26
179	Transfer of Copper from an Amyloid to a Natural Copperâ€Carrier Peptide with a Specific Mediating Ligand. Chemistry - A European Journal, 2015, 21, 17085-17090.	3.3	26
180	TDMQ20, a Specific Copper Chelator, Reduces Memory Impairments in Alzheimer's Disease Mouse Models. ACS Chemical Neuroscience, 2021, 12, 140-149.	3.5	26

#	Article	IF	CITATIONS
181	General Overview on Oxidations Catalyzed by Metalloporphyrins. Catalysis By Metal Complexes, 1994, , 1-47.	0.6	26
182	Nuclease activity of a water-soluble manganese porphyrin associated with potassium hydrogen persulphate: oxidative cleavage of DNA. Journal of the Chemical Society Chemical Communications, 1987, , 1169.	2.0	25
183	Brominated and chlorinated manganese chiral Schiff base complexes as epoxidation catalysts. Journal of Molecular Catalysis, 1993, 85, 13-19.	1.2	25
184	Metal-Mediated Oxidation of Tertiary Alcohols and Related Fragmentations. European Journal of Inorganic Chemistry, 2000, 2000, 1391-1406.	2.0	25
185	1H and 13C NMR Characterization of Hemiamidal Isoniazid-NAD(H) Adducts as Possible Inhibitors Of InhA Reductase of Mycobacterium tuberculosis. Chemistry - A European Journal, 2003, 9, 2034-2038.	3.3	25
186	Influence of the Copper Coordination Geometry on the DNA Cleavage Activity of Clip-Phen Complexes Studied by DFT. European Journal of Inorganic Chemistry, 2008, 2008, 612-619.	2.0	24
187	8. DEVELOPING VANADIUM AS AN ANTIDIABETIC OR ANTICANCER DRUG: A CLINICAL AND HISTORICAL PERSPECTIVE. , 2019, 19, 203-230.		24
188	Synthesis of hybrid "metalloporphyrin-ellipticine―molecules. Tetrahedron, 1989, 45, 2641-2648.	1.9	23
189	31P NMR characterization of terminal phosphates induced on DNA by the artificial nuclease â€ ⁻ Mn-TMPyP/KHSO5' in comparison with DNases I and II. Nucleic Acids Research, 1991, 19, 2835-2839.	14.5	23
190	Enantioselective epoxidation of olefins by single-oxygen atom donors catalyzed by managanese-glycoconjugated porphyrins. Journal of Molecular Catalysis A, 1996, 113, 23-34.	4.8	23
191	Synthesis of Bis[di(2-pyridyl)methyl]amine (BDPMA) by a Novel One-Pot Multi-Step Reductive Amination with Molecular Sieves and Zn/iPrOH. European Journal of Organic Chemistry, 1998, 1998, 1271-1273.	2.4	23
192	Alkylating properties of synthetic trioxanes related to artemisinin. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 1265-1270.	1.3	23
193	Acridine Conjugates of 3-Clip-Phen:Â Influence of the Linker on the Synthesis and the DNA Cleavage Activity of Their Copper Complexes. Bioconjugate Chemistry, 2002, 13, 1013-1020.	3.6	23
194	Synthesis and activity of macrocyclized chiral Mn(III)–Schiff-base epoxidation catalysts. Journal of Organometallic Chemistry, 2005, 690, 2163-2171.	1.8	23
195	DNA breaks generated by the bleomycin-iron III complex in the presence of KHSO5, a single oxygen donor. Biochemical and Biophysical Research Communications, 1986, 136, 1013-1020.	2.1	22
196	Influence of chelators and iron ions on the production and degradation of H2O2 by β-amyloid–copper complexes. Journal of Inorganic Biochemistry, 2006, 100, 2117-2126.	3.5	22
197	Synthesis of the Isonicotinoylnicotinamide Scaffolds of the Naturally Occurring Isoniazidâ^'NAD(P) Adducts. Journal of Organic Chemistry, 2007, 72, 675-678.	3.2	22
198	Reduction of aromatic halides with sodium borohydride catalysed by titanium complexes. Unexpected role of air. Journal of Organometallic Chemistry, 1981, 204, 345-346.	1.8	21

#	Article	IF	CITATIONS
199	Human and rat urinary metabolites of the antitumor drug celiptium ® (N2-methyl-9-hydroxyellipticinium acetate, NSC 264137). Identification of cysteine conjugates supporting the "biooxidative alkylation―hypothesis. Biochemical Pharmacology, 1983, 32, 3887-3890.	4.4	21
200	Ribose as the preferential target for the oxidized form of elliptinium acetate in ribonucleos(T)ides. Biological activities of the resulting adducts. Journal of Medicinal Chemistry, 1986, 29, 1350-1355.	6.4	21
201	Synthesis of tetramesitylporphyrin. Inorganic Chemistry, 1988, 27, 209-210.	4.0	21
202	Influence of the proximal ligand in the dismutation of hydrogen peroxide catalysed by manganese– and iron–porphyrin complexes. Journal of the Chemical Society Chemical Communications, 1989, , 412-414.	2.0	21
203	DNA cleavage by a â€~metalloporphyrin-spermine-oligonucleotide' molecule. Journal of the Chemical Society Chemical Communications, 1995, , 181-182.	2.0	21
204	Preliminary approach to the mechanism of the NaOCl/Mn(TPP)OAc epoxidation system. Journal of Molecular Catalysis, 1984, 23, 115-119.	1.2	20
205	Synthesis and DNA cleavage of 2â€2-O-amino-linked metalloporphyrin–oligonucleotide conjugates. Journal of the Chemical Society, Perkin Transactions 1, 2000, , 3088-3095.	1.3	20
206	Binding of the tautomeric forms of isoniazid-NAD adducts to the active site of the Mycobacterium tuberculosis enoyl-ACP reductase (InhA): A theoretical approach. Journal of Molecular Graphics and Modelling, 2008, 27, 536-545.	2.4	20
207	Trioxaquine PA1259 Alkylates Heme in the Blood-Feeding Parasite Schistosoma mansoni. Antimicrobial Agents and Chemotherapy, 2011, 55, 2403-2405.	3.2	20
208	Potentiation of Artemisinin Activity against Chloroquine-Resistant <i>Plasmodium falciparum</i> Strains by Using Heme Models. Antimicrobial Agents and Chemotherapy, 1999, 43, 2555-2558.	3.2	20
209	Guanine Oxidation in Double-stranded DNA by MnTMPyP/KHSO5: At Least Three Independent Reaction Pathways. Metal-Based Drugs, 2001, 8, 47-56.	3.8	19
210	Evidence for the Contribution of the Hemozoin Synthesis Pathway of the Murine Plasmodium yoelii to the Resistance to Artemisinin-Related Drugs. PLoS ONE, 2012, 7, e32620.	2.5	19
211	N ₄ â€Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copperâ€Amyloidâ€Ĥ² _{1–16} . Chemistry - A European Journal, 2018, 24, 7825-7829.	3.3	19
212	Further evidence for a metal-oxo intermediate in the olefin epoxidation by iron- or manganese-bleomycin complexes associated with KHSO5, an oxygen atom donor. Tetrahedron Letters, 1987, 28, 2955-2958.	1.4	18
213	Preparation of Tetracationic Metalloporphyrinâ `Spermine Conjugates. Journal of Organic Chemistry, 1997, 62, 3505-3510.	3.2	18
214	Structure–Activity Relationships of Synthetic Tricyclic Trioxanes Related to Artemisinin: The Unexpected Alkylative Property of a 3-(Methoxymethyl) Analog. European Journal of Organic Chemistry, 1999, 1999, 1935-1938.	2.4	18
215	Heme alkylation by artemisinin and trioxaquines. Journal of Physical Organic Chemistry, 2006, 19, 562-569.	1.9	18
216	The Antimalarial Artemisone is an Efficient Heme Alkylating Agent. European Journal of Inorganic Chemistry, 2008, 2008, 2133-2135.	2.0	18

#	Article	IF	CITATIONS
217	Activity of trioxaquine PA1259 in mice infected by Schistosoma mansoni. Comptes Rendus Chimie, 2012, 15, 75-78.	0.5	18
218	Design and synthesis of new theranostic agents for near-infrared imaging of β-amyloid plaques and inhibition of β-amyloid aggregation in Alzheimer's disease. Dyes and Pigments, 2017, 147, 130-140.	3.7	18
219	Mechanism of the Catalytic Oxidation of Tertiary Alcohols by the Water-Soluble Mn-TMPyP/KHSO5 System: β-Fragmentation versusO-Neophyl Rearrangement. European Journal of Inorganic Chemistry, 1999, 1999, 1467-1477.	2.0	17
220	Characterization of an oxaluric acid derivative as a guanine oxidation product. Chemical Communications, 2001, , 2116-2117.	4.1	17
221	Preparation of Cyclo-Phen-Type Ligands: Chelators of Metal Ions as Potential Therapeutic Agents in the Treatment of Neurodegenerative Diseases. ChemBioChem, 2005, 6, 1976-1980.	2.6	17
222	The Necessity of Having a Tetradentate Ligand to Extract Copper(II) Ions from Amyloids. ChemistryOpen, 2015, 4, 27-31.	1.9	17
223	Homogeneous catalytic activation of Grignard reagents by nickel complexes. A new stereospecific method for reduction of alkoxy-, chloro-, and fluoro-silanes. Journal of the Chemical Society Chemical Communications, 1973, , 164.	2.0	16
224	Hydroxylating activity of a water-soluble manganese porphyrin associated with potassium hydrogen persulfate: Formation of 8-hydroxyadenosine-5′-mono-phosphate from AMP Tetrahedron Letters, 1988, 29, 6615-6617.	1.4	16
225	Modification of the Thiourea Linkage of a Fluoresceinâ^'Oligonucleotide Conjugate to a Guanidinium Motif during Ammonia Deprotection. Bioconjugate Chemistry, 1998, 9, 627-632.	3.6	16
226	A single-strand polymer of hexacoordinated zinc(II) phosphodiester complex. Journal of Organometallic Chemistry, 2001, 624, 58-62.	1.8	16
227	Ring–Chain Tautomerism of Simplified Analogues of Isoniazid–NAD(P) Adducts: an Experimental and Theoretical Study. European Journal of Organic Chemistry, 2007, 2007, 1624-1630.	2.4	16
228	Does Chemistry Have a Future in Therapeutic Innovations?. Angewandte Chemie - International Edition, 2012, 51, 8702-8706.	13.8	16
229	Covalent binding of the antitumor agent N2-methyl-9-hydroxy-ellipticinium acetate (NSC 264137) on RNA and poly a invitro. Biochemical and Biophysical Research Communications, 1984, 124, 416-422.	2.1	15
230	Oxidativer Abbau aromatischer Schadstoffe durch chemische Ligninaseâ€Modelle auf Porphyrinâ€Basis. Angewandte Chemie, 1990, 102, 1488-1490.	2.0	15
231	Cleavage of double-stranded DNA by manganese tris(methylpyridiniumyl)porphyrin linked to 3′-spermine oligonucleotides. Journal of Biological Inorganic Chemistry, 1996, 1, 239-246.	2.6	15
232	Models of Heme Peroxidases and Catalases. , 2000, , 171-214.		15
233	Unprecedented amido-bridged dinuclear mixed-valence cobalt complexes: first structure of a dinuclear μ-OMe Co(II)/Co(III) complex. New Journal of Chemistry, 2000, 24, 949-951.	2.8	15
234	Alkylation of manganese(II) tetraphenylporphyrin by antimalarial fluorinated artemisinin derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 1059-1062.	2.2	15

#	Article	IF	CITATIONS
235	Use of Short Duplexes for the Analysis of the Sequence-Dependent Cleavage of DNA by a Chemical Nuclease, a Manganese Porphyrin. ChemBioChem, 2005, 6, 2326-2335.	2.6	15
236	CONVENIENT METHOD FOR THE PREPARATION OF 2â€2-DEOXYRIBOSYLUREA BY THYMIDINE OXIDATION AND NMR STUDY OF BOTH ANOMERS. Nucleosides, Nucleotides and Nucleic Acids, 2001, 20, 1463-1471.	1.1	14
237	Synthesis of organo-soluble metallophthalocyanines bearing electron-withdrawing substituents. Journal of Porphyrins and Phthalocyanines, 2001, 05, 867-872.	0.8	14
238	Endoperoxide-based compounds: cross-resistance with artemisinins and selection of a Plasmodium falciparum lineage with a K13 non-synonymous polymorphism. Journal of Antimicrobial Chemotherapy, 2018, 73, 395-403.	3.0	14
239	A study of the reaction between the dichloromethylphosphine–aluminium chloride complex and terpenes. Part 2. Reaction of the PCl2Me–AlCl3complex and camphene, and an X-ray crystallographic study of the products. Journal of the Chemical Society Perkin Transactions 1, 1980, , 2136-2140.	0.9	13
240	A convenient route to adenine N1-oxide mono- and polynucleotides by oxidation with potassium monopersulfate. Journal of Organic Chemistry, 1989, 54, 3213-3215.	3.2	13
241	Influence of the anion of Felll salts on the product distribution in the oxidative degradation of a tetrapyridyl ligand. New Journal of Chemistry, 1999, 23, 773-776.	2.8	13
242	Alkylation of Microperoxidase-11 by the Antimalarial Drug Artemisinin. ChemBioChem, 2002, 3, 1147-1149.	2.6	13
243	How can iron salts mediate the degradation of nucleos(t) ides by elliptinium acetate via free-radicals?. Biochemical and Biophysical Research Communications, 1985, 133, 15-22.	2.1	12
244	Identification of sugar degradation intermediates in a metalloporphyrin mediated DNA cleavage resulting from hydroxylation at C-5′. Journal of the Chemical Society Chemical Communications, 1993, , 149-151.	2.0	12
245	Synthesis and stereochemical study of a trioxaquine prepared from cis-bicyclo〚3.3.0ã€∍octane-3,7-dione. Comptes Rendus Chimie, 2002, 5, 297-302.	0.5	12
246	Studies on the 4-benzoylpyridine-3-carboxamide entity as a fragment model of the Isoniazid–NAD adduct. Organic and Biomolecular Chemistry, 2005, 3, 666-669.	2.8	12
247	Cytotoxic hybrid molecules â€~metalloporphyrin–ellipticine' having a high affinity for DNA. Journal of the Chemical Society Chemical Communications, 1989, , 1711-1713.	2.0	11
248	Organization processes of a pyropheophorbide–spermidine conjugate in the presence or absence of DNA. Journal of the Chemical Society Perkin Transactions II, 1996, , 1649-1654.	0.9	11
249	Oxidation of Dichloroanilines and Related Anilides Catalyzed by Iron(III) Tetrasulfonatophthalocyanine. European Journal of Inorganic Chemistry, 1999, 1999, 2319-2325.	2.0	11
250	Is the isonicotinoyl radical generated during activation of isoniazid by MnIII-pyrophosphate?. Comptes Rendus Chimie, 2002, 5, 325-330.	0.5	11
251	The P-Stereocontrolled Synthesis of PO/PS-Chimeric Oligonucleotides by Incorporation of Dinucleoside Phosphorothioates Bearing anO-4-Nitrophenyl Phosphorothioate Protecting Group. European Journal of Organic Chemistry, 2005, 2005, 2924-2930.	2.4	11
252	Photolysis and Thermolysis of Platinum(IV) 2,2′â€Bipyridine Complexes Lead to Identical Platinum(II)–DNA Adducts. Chemistry - A European Journal, 2010, 16, 11420-11431.	3.3	11

#	Article	IF	CITATIONS
253	Magnetite Fe ₃ O ₄ Has no Intrinsic Peroxidase Activity, and Is Probably not Involved in Alzheimer's Oxidative Stress. Angewandte Chemie, 2018, 130, 14974-14979.	2.0	11
254	Alkylation of heme by artemisinin, an antimalarial drug. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 85-89.	0.1	10
255	Recent Advances in Malaria Chemotherapy. Journal of the Chinese Chemical Society, 2002, 49, 301-310.	1.4	10
256	Synthesis and biological evaluation of a new trioxaquine containing a trioxane moiety obtained by halogenocyclisation of a hemiperoxyacetal. Comptes Rendus Chimie, 2003, 6, 153-160.	0.5	10
257	1H and13C NMR characterization of pyridinium-type isoniazid–NAD adducts as possible inhibitors of InhA reductase of Mycobacterium tuberculosis. Organic and Biomolecular Chemistry, 2005, 3, 670-673.	2.8	10
258	Synthesis of N-pyrimidin[1,3,4]oxadiazoles and N-pyrimidin[1,3,4]-thiadiazoles from 1,3,4-oxadiazol-2-amines and 1,3,4-thiadiazol-2-amines via Pd-catalyzed heteroarylamination. Tetrahedron Letters, 2019, 60, 1359-1362.	1.4	10
259	Selective binding of elliptinium acetate onto the 3′-terminal ribose of diribonucleosides monophosphates. Biochemical and Biophysical Research Communications, 1985, 128, 1173-1179.	2.1	9
260	Oxidative damage on RNA mediated by cationic metalloporphyrin–antisense oligonucleotides conjugates â€. Journal of the Chemical Society Dalton Transactions, 1997, , 4113-4118.	1.1	9
261	Design, synthesis and cleaving activity of an abiotic nuclease based on a manganese(III) porphyrin complex bearing two acridine moieties. Chemical Communications, 1998, , 1343-1344.	4.1	9
262	Simple and Efficient Syntheses of 1,10-Phenanthrolines Substituted at C3 or C3 and C8 by Methoxy or Hydroxy Groups. Synlett, 2001, 2001, 1629-1631.	1.8	9
263	Synthesis and antimalarial activity of 2-methoxyprop-2-yl peroxides derivatives. Bioorganic and Medicinal Chemistry Letters, 2003, 13, 75-77.	2.2	9
264	Alkylation of manganese(ii) tetraphenylporphyrin by a synthetic antimalarial trioxane. Organic and Biomolecular Chemistry, 2003, 1, 2859.	2.8	9
265	Alkylating ability of artemisinin after Cu(I)-induced activation. Journal of Biological Inorganic Chemistry, 2009, 14, 601-610.	2.6	9
266	Development of novel theranostic agents for inÂvivo amyloid imaging and protective effects on human neuroblastoma cells. European Journal of Medicinal Chemistry, 2019, 181, 111585.	5.5	9
267	Why Is Tetradentate Coordination Essential for Potential Copper Homeostasis Regulators in Alzheimer's Disease?. European Journal of Inorganic Chemistry, 2019, 2019, 4712-4718.	2.0	9
268	Evidence for electrophilic properties of N 2 -methyl-9-hydroxy ellipticinium acetate (Celiptium) from human biliary metabolites. Cancer Chemotherapy and Pharmacology, 1985, 15, 63-5.	2.3	8
269	Requirement for the presence of a 2′-α-OH group for the arylation of purine nucleosides by elliptinium acetate, an antitumour agent. Journal of the Chemical Society Chemical Communications, 1985, , 60-62.	2.0	8
270	Obtention of two anomers of imidazolone during the type I photosensitized oxidation of 2â€2-deoxyguanosine. Journal of the Chemical Society Perkin Transactions 1, 1999, , 1201-1206.	0.9	8

#	Article	IF	CITATIONS
271	Synthesis, characterization and crystal structures of copper(II) complexes containing multidentate polypyridine ligands â€. Journal of the Chemical Society Dalton Transactions, 1999, , 3989-3994.	1.1	8
272	Catecholâ€Based Ligands as Potential Metal Chelators Inhibiting Redox Activity in Alzheimer's Disease. European Journal of Inorganic Chemistry, 2017, 2017, 3198-3204.	2.0	8
273	Is iron associated with amyloid involved in the oxidative stress of Alzheimer's disease?. Comptes Rendus Chimie, 2017, 20, 987-989.	0.5	8
274	Phenothiazine-based theranostic compounds for in vivo near-infared fluorescence imaging of β-amyloid plaques and inhibition of Al² aggregation. Dyes and Pigments, 2019, 171, 107744.	3.7	8
275	Peroxidase-catalysed oxidation of N2,N6-dimethyl-9-hydroxyellipticinium acetate. Biochemical Pharmacology, 1987, 36, 2599-2604.	4.4	7
276	Dramatic enhancement of the photoactivity of zinc porphyrin–ellipticine conjugates by DNA. Journal of the Chemical Society Chemical Communications, 1990, , 1131-1133.	2.0	7
277	Oxidation of tertiary diaryl alcohols catalyzed by a water-soluble metalloporphyrin: Caliph–Caliph versus Caliph–CAr bond cleavage. Chemical Communications, 1997, , 2321-2322.	4.1	7
278	Asymmetric Biomimetic Oxidations. , 2000, , 543-562.		7
279	Radical mechanism of action of the artemisinin-type compounds. Trends in Parasitology, 2001, 17, 267-268.	3.3	7
280	Incorporation of Oxidized Guanine Nucleoside 5′-Triphosphates in DNA with DNA Polymerases and Preparation of Single-Lesion Carrying DNA. Biochemistry, 2008, 47, 4788-4799.	2.5	7
281	The TDMQ Regulators of Copper Homeostasis Do Not Disturb the Activities of Cu,Zn-SOD, Tyrosinase, or the Colll Cofactor Vitamin B12. European Journal of Inorganic Chemistry, 2019, 2019, 1384-1388.	2.0	7
282	The nonenzymatic activation of isoniazid by MnIII-pyrophosphate in the presence of NADH produces the inhibition of the enoyl-ACP reductase InhA from Mycobacterium tuberculosis. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2001, 4, 35-40.	0.1	6
283	Interaction of iron(II)-heme and artemisinin with a peptide mimic of Plasmodium falciparum HRP-II. Journal of Inorganic Biochemistry, 2007, 101, 1739-1747.	3.5	6
284	Comment on "Free-Radical Formation by the Peroxidase-Like Catalytic Activity of MFe ₂ O ₄ (M = Fe, Ni, and Mn) Nanoparticles― Journal of Physical Chemistry C, 2019, 123, 28513-28514.	3.1	6
285	Selektive Spaltung einer 35merâ€Einzelstrangâ€DNA, die den Startcodon des TATâ€Gens von HIVâ€1 enthä, durch ein maßgeschneidertes kationisches Manganporphyrinâ€Konjugat. Angewandte Chemie, 1993, 105, 607-609.	2.0	5
286	2. SMALL MOLECULES: THE PAST OR THE FUTURE IN DRUG INNOVATION?. , 2019, , 17-48.		5
287	Activation of Hydrogen Peroxide with Biomimetic Systems. Catalysis By Metal Complexes, 1992, , 153-175.	0.6	5
288	From studies on artemisinin derivatives to trioxaquines. Journal of Porphyrins and Phthalocyanines, 2002, 06, 271-273.	0.8	4

BERNARD MEUNIER

#	Article	IF	CITATIONS
289	Age and Alzheimer's Disease. Nutrients, 2016, 8, 372.	4.1	4
290	Synthesis and Antimalarial Activities of New Hybrid Atokel Molecules. ChemistryOpen, 2022, 11, e202200064.	1.9	4
291	Epoxide configuration in 3β-acetoxy-7α-hydroxy-14,15-epoxy-apotirucallane prepared from tirucalla-7,24-dien-3-one. Tetrahedron, 1981, 37, 2303-2306.	1.9	3
292	A One Step Synthesis of O6-Methyl-2′-deoxyguanosine. Nucleosides & Nucleotides, 1983, 2, 459-464.	0.5	3
293	Hemoglobin-catalyzed transformation of elliptinium acetate into electrophilic species. Evidences for oxidative activation of the drug in human red blood cells. Chemico-Biological Interactions, 1988, 65, 73-84.	4.0	3
294	Preparation of cationic non-metallated or zinc-porphyrin-oligonucleotide fluorescent conjugates. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1998, 1, 259-267.	0.1	3
295	Selective Oxidation of 2′-Deoxyguanosine to Imidazolone by the Chemical Nuclease MnTMPyP Associated to KHSO ₅ or Sulfite/O _{2.} . Nucleosides & Nucleotides, 1999, 18, 1061-1063.	0.5	3
296	Preliminary Investigations of the Effect of Lipophilic Analogues of the Active Metabolite of Isoniazid Toward Bacterial and Plasmodial Strains. Chemical Biology and Drug Design, 2012, 79, 1001-1006.	3.2	3
297	Synthesis and characterization of copper-specific tetradendate ligands as potential treatment for Alzheimer's disease. Comptes Rendus Chimie, 2018, 21, 475-483.	0.5	3
298	Ribonucleoside Diphosphate Adducts with Elliptinium Acetate, an Antitumor Agent. Nucleosides & Nucleotides, 1987, 6, 691-698.	0.5	2
299	Interaction of artemisinin (qinghaosu) with the tetraphenylporphyrinato-manganese(II) complex. Comptes Rendus De L'Académie Des Sciences - Series IIB - Mechanics-Physics-Chemistry-Astronomy, 1997, 324, 59-66.	0.1	2
300	Mechanism of Oxidation Reactions Catalyzed by Cytochrome P450 Enzyme. ChemInform, 2004, 35, no.	0.0	2
301	Clip-Phen Conjugates for the Specific Cleavage of Nucleic Acids. Nucleosides, Nucleotides and Nucleic Acids, 2007, 26, 927-930.	1.1	2
302	Les molécules hybrides comme stratégie de création de nouveaux agents anti-infectieux. Comptes Rendus Chimie, 2011, 14, 400-405.	0.5	2
303	Synthesis and characterization of 8-aminoquinolines, substituted by electron donating groups, as high-affinity copper chelators for the treatment of Alzheimer's disease. Comptes Rendus Chimie, 2019, 22, 419-427.	0.5	2
304	Preparation of Water-Soluble Cationic Phosphorus-Containing Dendrimers as DNA Transfecting Agents. Chemistry - A European Journal, 1999, 5, 3644-3650.	3.3	2
305	Oxygenation Reactions Catalyzed by Supported Sulfonated Metalloporphyrins. ACS Symposium Series, 1993, , 58-66.	0.5	1
306	Synthesis and characterization of manganese(III) complexes of a chiral disulfonamide ligand based on trans-1,2-diaminocyclohexane. Polyhedron, 1997, 16, 2365-2368.	2.2	1

#	Article	IF	CITATIONS
307	Oxidation of 2,4,6-trichlorophenol catalyzed by iron phthalocyanines covalently bound to silica. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1999, 2, 241-250.	0.1	1
308	Oxidation of thioureas with potassium monopersulfate: an efficient method for their environmentally safe degradation. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 285-288.	0.1	1
309	L'innovation thérapeutiqueÂ: évolution et tendances. , 2015, , .		1
310	X-Ray diffraction structure of Cu(II) and Zn(II) complexes of 8-aminoquinoline derivatives (TDMQ), related to the activity of these chelators as potential drugs against Alzheimer's disease. Journal of Molecular Structure, 2022, 1251, 132078.	3.6	1
311	Chloroquine and artemisinin: six decades of researchwhat next?. IDrugs: the Investigational Drugs Journal, 2003, 6, 674-80.	0.7	1
312	Oxidation of guanine bases mediated by a manganese-porphyrin-oligonucleotide conjugate onto a G-rich DNA target: 8-oxo-7,8-dihydroguanine is not the major lesion. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 1998, 1, 725-736.	0.1	0
313	Second generation of a polypyridine ligand to mimic enzymes containing non-heme iron centers. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 735-741.	0.1	0
314	Origin of the oxygen atom in metalloporphyrin-catalyzed epoxidations with LiOCl as oxidant. Comptes Rendus De L'Academie Des Sciences - Series IIc: Chemistry, 2000, 3, 771-775.	0.1	0
315	Porphyrin—Aminoquinoline Conjugates as Telomerase Inhibitors ChemInform, 2003, 34, no.	0.0	0
316	Biomimetic Chemical Catalysts in the Oxidative Activation of Drugs. ChemInform, 2004, 35, no.	0.0	0
317	C10-Modified Artemisinin Derivatives: Efficient Heme-Alkylating Agents. ChemInform, 2005, 36, no.	0.0	0
318	Heme as Trigger and Target of the Antimalarial Peroxide Artemisinin. ACS Symposium Series, 2005, , 281-294.	0.5	0
319	Frontispiece: N4 -Tetradentate Chelators Efficiently Regulate Copper Homeostasis and Prevent ROS Production Induced by Copper-Amyloid-β1-16. Chemistry - A European Journal, 2018, 24, .	3.3	0
320	Synthesis and Chelation Selectivity Evaluation of 8-Aminoquinoline Derivatives as Copper Chelator. Chinese Journal of Organic Chemistry, 2019, 39, 500.	1.3	0