
Sara Valsecchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8234482/publications.pdf Version: 2024-02-01

SADA VALSECCHI

#	Article	IF	CITATIONS
1	Suspect screening of wastewaters to trace anti-COVID-19 drugs: Potential adverse effects on aquatic environment. Science of the Total Environment, 2022, 824, 153756.	3.9	23
2	Assessment of Reed Grasses (Phragmites australis) Performance in PFAS Removal from Water: A Phytoremediation Pilot Plant Study. Water (Switzerland), 2022, 14, 946.	1.2	4
3	Legacy and emerging contaminants in the endangered filter feeder basking shark Cetorhinus maximus. Marine Pollution Bulletin, 2022, 176, 113466.	2.3	5
4	Integrated Exposure and Algal Ecotoxicological Assessments of Effluents from Secondary and Advancedâ€Tertiary Wastewaterâ€Treatment Plants. Environmental Toxicology and Chemistry, 2022, 41, 2404-2419.	2.2	3
5	Per―and Polyfluoroalkyl Substances (PFAS) in Fish from European Lakes: Current Contamination Status, Sources, and Perspectives for Monitoring. Environmental Toxicology and Chemistry, 2021, 40, 658-676.	2.2	45
6	Assessing the Ecological Risks of Per―and Polyfluoroalkyl Substances: Current Stateâ€ofâ€the Science and a Proposed Path Forward. Environmental Toxicology and Chemistry, 2021, 40, 564-605.	2.2	166
7	Within―and Amongâ€Clutch Variation of Yolk Perfluoroalkyl Acids in a Seabird from the Northern Adriatic Sea. Environmental Toxicology and Chemistry, 2021, 40, 744-753.	2.2	11
8	Determination of perfluoroalkyl acids in different tissues of graminaceous plants. Analytical Methods, 2021, 13, 1643-1650.	1.3	4
9	Occurrence, distribution and pollution pattern of legacy and emerging organic pollutants in surface water of the Kongsfjorden (Svalbard, Norway): Environmental contamination, seasonal trend and climate change. Marine Pollution Bulletin, 2021, 163, 111900.	2.3	28
10	Exposure assessment of PFASâ€contaminated sites using avian eggs as a biomonitoring tool: A frame of reference and a case study in the Po River valley (Northern Italy). Integrated Environmental Assessment and Management, 2021, 17, 733-745.	1.6	13
11	Sediment quality assessment framework for per―and polyfluoroalkyl substances: Results from a preparatory study and regulatory implications. Integrated Environmental Assessment and Management, 2021, 17, 716-725.	1.6	7
12	The new PFAS C6O4 and its effects on marine invertebrates: First evidence of transcriptional and microbiota changes in the Manila clam Ruditapes philippinarum. Environment International, 2021, 152, 106484.	4.8	35
13	Inter-laboratory mass spectrometry dataset based on passive sampling of drinking water for non-target analysis. Scientific Data, 2021, 8, 223.	2.4	14
14	New compounds, old problems. The case of C6O4 - a substitute of PFOA - and its effects to the clam Ruditapes philippinarum. Journal of Hazardous Materials, 2021, 420, 126689.	6.5	10
15	Uptake and translocation of perfluoroalkyl acids (PFAA) in red chicory (Cichorium intybus L.) under various treatments with pre-contaminated soil and irrigation water. Science of the Total Environment, 2020, 708, 134766.	3.9	48
16	The NORMAN Association and the European Partnership for Chemicals Risk Assessment (PARC): let's cooperate!. Environmental Sciences Europe, 2020, 32, .	2.6	46
17	Uptake and translocation of perfluoroalkyl acids (PFAAs) in hydroponically grown red chicory (Cichorium intybus L.): Growth and developmental toxicity, comparison with growth in soil and bioavailability implications. Science of the Total Environment, 2020, 720, 137333.	3.9	42
18	Trophic Magnification of Legacy (PCB, DDT and Hg) and Emerging Pollutants (PFAS) in the Fish Community of a Small Protected Southern Alpine Lake (Lake Mergozzo, Northern Italy). Water (Switzerland), 2020, 12, 1591.	1.2	27

SARA VALSECCHI

#	Article	IF	CITATIONS
19	Testing the Use of Standardized Laboratory Tests to Infer Hg Bioaccumulation in Indigenous Benthic Organisms of Lake Maggiore (NW Italy). Applied Sciences (Switzerland), 2020, 10, 1970.	1.3	4
20	Organic Contaminants in Zooplankton of Italian Subalpine Lakes: Patterns of Distribution and Seasonal Variations. Water (Switzerland), 2019, 11, 1901.	1.2	7
21	Effects of Perfluoralkyl Substances on a Multigenerational Scale: A Case Study with <i>Chironomus riparius</i> (Diptera, Chironomidae). Environmental Toxicology and Chemistry, 2019, 38, 988-999.	2.2	16
22	Intensive monitoring of conventional and surrogate quality parameters in a highly urbanized river affected by multiple combined sewer overflows. Water Science and Technology: Water Supply, 2019, 19, 953-966.	1.0	20
23	Perfluoroalkyl acids in fish of Italian deep lakes: Environmental and human risk assessment. Science of the Total Environment, 2019, 653, 351-358.	3.9	36
24	Free flap head and neck reconstruction in the elderly: what is the impact on quality of life?. Acta Otorhinolaryngologica Italica, 2019, 39, 145-149.	0.7	10
25	Effect-based and chemical analytical methods to monitor estrogens under the European Water Framework Directive. TrAC - Trends in Analytical Chemistry, 2018, 102, 225-235.	5.8	82
26	Screening and risk management solutions for steroidal estrogens in surface and wastewater. TrAC - Trends in Analytical Chemistry, 2018, 102, 343-358.	5.8	68
27	Zürich Statement on Future Actions on Per- and Polyfluoroalkyl Substances (PFASs). Environmental Health Perspectives, 2018, 126, 84502.	2.8	91
28	Deriving environmental quality standards for perfluorooctanoic acid (PFOA) and related short chain perfluorinated alkyl acids. Journal of Hazardous Materials, 2017, 323, 84-98.	6.5	74
29	Clam bioaccumulation of Alkylphenols and Polyciclic aromatic hydrocarbons in the Venice lagoon under different pressures. Marine Pollution Bulletin, 2017, 124, 121-129.	2.3	10
30	Contaminant concentrations in bivalve tissues are not necessarily representative of the chemical status of a site. Integrated Environmental Assessment and Management, 2017, 13, 1123-1124.	1.6	0
31	Combined Use of Caffeine and Turbidity to Evaluate the Impact of CSOs on River Water Quality. Water, Air, and Soil Pollution, 2017, 228, 1.	1.1	33
32	Liquid chromatography mass spectrometry determination of perfluoroalkyl acids in environmental solid extracts after phospholipid removal and on-line turbulent flow chromatography purification. Journal of Chromatography A, 2016, 1453, 62-70.	1.8	32
33	To the editor. Environmental Toxicology and Chemistry, 2016, 35, 2392-2394.	2.2	2
34	Potential toxicity of environmentally relevant perfluorooctane sulfonate (PFOS) concentrations to yellow-legged gull Larus michahellis embryos. Environmental Science and Pollution Research, 2016, 23, 426-437.	2.7	13
35	Effectiveness of measures adopted for the reduction of nonylphenol emission in European river basins: a case study of the River Lambro, Northern Italy. Water Policy, 2015, 17, 1176-1190.	0.7	4
36	An On-Line Solid Phase Extraction-Liquid Chromatography-Tandem Mass Spectrometry Method for the Determination of Perfluoroalkyl Acids in Drinking and Surface Waters. Journal of Analytical Methods in Chemistry, 2015, 2015, 1-13.	0.7	32

SARA VALSECCHI

#	Article	IF	CITATIONS
37	Occurrence and sources of perfluoroalkyl acids in Italian river basins. Chemosphere, 2015, 129, 126-134.	4.2	98
38	Evaluating the impact of a fluoropolymer plant on a river macrobenthic community by a combined chemical, ecological and genetic approach. Science of the Total Environment, 2015, 538, 654-663.	3.9	10
39	On-line sample extraction and purification for the LC–MS determination of emerging contaminants in environmental samples. Trends in Environmental Analytical Chemistry, 2015, 8, 27-37.	5.3	41
40	Sources and fate of perfluorinated compounds in the aqueous environment and in drinking water of a highly urbanized and industrialized area in Italy. Journal of Hazardous Materials, 2015, 282, 51-60.	6.5	142
41	Liquid Chromatography–Mass Spectrometry for the Analysis of Perfluorinated Compounds in Water Samples. , 2015, , 485-515.		0
42	Surrogate measures for providing high frequency estimates of total phosphorus concentrations in urban watersheds. Water Research, 2014, 64, 265-277.	5.3	59
43	Evolutionary ecotoxicology of perfluoralkyl substances (PFASs) inferred from multigenerational exposure: A case study with Chironomus riparius (Diptera, Chironomidae). Aquatic Toxicology, 2014, 156, 41-51.	1.9	26
44	Determination of perfluorinated compounds in aquatic organisms: a review. Analytical and Bioanalytical Chemistry, 2013, 405, 143-157.	1.9	75
45	The analytical problem of measuring total concentrations of organic pollutants in whole water. TrAC - Trends in Analytical Chemistry, 2012, 36, 71-81.	5.8	30
46	Importance of dietary uptake of trace elements in the benthic deposit-feeding Lumbriculus variegatus. TrAC - Trends in Analytical Chemistry, 2012, 36, 103-112.	5.8	38
47	Chemical-monitoring on-site exercises to harmonize analytical methods for priority substances in the European Union. TrAC - Trends in Analytical Chemistry, 2012, 36, 25-35.	5.8	14
48	Fate and monitoring of hazardous substances in temporary rivers. TrAC - Trends in Analytical Chemistry, 2011, 30, 1222-1232.	5.8	11
49	Pollutant partitioning for monitoring surface waters. TrAC - Trends in Analytical Chemistry, 2009, 28, 159-169.	5.8	34
50	Automated Determination of Linear Alkylbenzene Sulphonate (LAS) in Wastewater Treatment Plants Effluents Using on Line Solid-phase Extraction Followed by HPLC with Fluorescence Detection. Tenside, Surfactants, Detergents, 2009, 46, 346-351.	0.5	2
51	Laboratory intercomparison study for the analysis of nonylphenol and octylphenol in river water. TrAC - Trends in Analytical Chemistry, 2008, 27, 89-95.	5.8	37
52	28 Chemical composition of fresh snow in the Himalaya and Karakoram. Developments in Earth Surface Processes, 2007, 10, 251-262.	2.8	2
53	Uptake and Elimination of 4-Nonylphenol by the Clam Tapes philippinarum. Archives of Environmental Contamination and Toxicology, 2007, 53, 571-578.	2.1	26
54	Partition of Nonylphenol and Related Compounds Among Different Aquatic Compartments in Tiber River (Central Italy). Water, Air, and Soil Pollution, 2006, 172, 151-166.	1.1	83

#	Article	IF	CITATIONS
55	Chloride interference in the determination of bromate in drinking water by reagent free ion chromatography with mass spectrometry detection. Journal of Chromatography A, 2005, 1085, 42-46.	1.8	34
56	UPTAKE AND ACCUMULATION OF SEDIMENT-ASSOCIATED 4-NONYLPHENOL IN A BENTHIC INVERTEBRATE (LUMBRICULUS VARIEGATUS, FRESHWATER OLIGOCHAETE). Environmental Toxicology and Chemistry, 2005, 24, 1165.	2.2	20
57	An Old Relict Glacier Body Preserved in Permafrost Environment: The Foscagno Rock Glacier Ice Core (Upper Valtellina, Italian Central Alps). Arctic, Antarctic, and Alpine Research, 2004, 36, 108-116.	0.4	25
58	Determination of endocrine disrupting chemicals in environmental solid matrices by extraction with a non-ionic surfactant (Tween 80). Journal of Chromatography A, 2004, 1022, 1-7.	1.8	40
59	Chemical and radio-chemical composition of freshsnow samples from northern slopes of Himalayas (Cho Oyu range, Tibet). Atmospheric Environment, 2003, 37, 1573-1581.	1.9	35
60	Quality assessment of bed sediments of the Po River (Italy). Water Research, 2003, 37, 501-518.	5.3	78
61	Determination of 4-nonylphenol and 4-nonylphenol ethoxylates in river sediments by microwave assisted solvent extraction. Annali Di Chimica, 2003, 93, 297-304.	0.6	3
62	A note on the ice crystallography and geochemistry of a debris cone, Northern Foothills, Antarctica. Permafrost and Periglacial Processes, 2002, 13, 77-82.	1.5	1
63	lon-chromatographic screening method for monitoring arsenate and other anionic pollutants in ground waters of Northern Italy. Journal of Chromatography A, 2001, 920, 231-238.	1.8	13
64	Recovery of 4-nonylphenol and 4-nonylphenol ethoxylates from river sediments by pressurised liquid extraction. Journal of Chromatography A, 2001, 925, 297-301.	1.8	28
65	Chemical composition of freshsnow samples from the southern slope of Mt. Everest region (Khumbu-Himal region, Nepal). Atmospheric Environment, 2001, 35, 3183-3190.	1.9	53
66	Analysis of inorganic species in environmental samples by capillary electrophoresis. Journal of Chromatography A, 1999, 834, 363-385.	1.8	47
67	Electrochemical detection in the capillary electrophoresis analysis of inorganic compounds. Journal of Chromatography A, 1999, 834, 103-116.	1.8	48
68	Matrix effects in the determination of bromate in drinking water by ion chromatography. Journal of Chromatography A, 1999, 847, 279-284.	1.8	9
69	Ion chromatography determination of trace level bromate by large volume injection with conductivity and spectrophotometric detection after post column derivatisation. Journal of Chromatography A, 1999, 864, 263-270.	1.8	18
70	Chemical composition of Monsoon deposition in the Everest region. Science of the Total Environment, 1999, 226, 187-199.	3.9	41
71	Use of column-switching ion chromatography for the simultaneous determination of total nitrogen and phosphorus after microwave assisted persulphate digestion. Journal of Chromatography A, 1998, 822, 162-166.	1.8	9
72	The Distribution of PCB's and Chlorinated Pesticides in Two Connected Himalayan Lakes. Water, Air, and Soil Pollution, 1997, 99, 717-725.	1.1	0

#	Article	IF	CITATIONS
73	Determination of anions in rainwater by capillary electrophoresis with conductivity detection. Journal of Chromatography A, 1997, 760, 326-332.	1.8	35