Nicolas Chauvin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8234431/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Temperature dependence of optical properties of InAs/InP quantum rod-nanowires grown on Si substrate. Journal of Luminescence, 2021, 231, 117814.	1.5	2
2	Highly linear polarized emission at telecom bands in InAs/InP quantum dot-nanowires by geometry tailoring. Nanoscale, 2021, 13, 16952-16958.	2.8	1
3	O-Band Emitting InAs Quantum Dots Grown by MOCVD on a 300 mm Ge-Buffered Si (001) Substrate. Nanomaterials, 2020, 10, 2450.	1.9	5
4	Density-controlled growth of vertical InP nanowires on Si(111) substrates. Nanotechnology, 2020, 31, 354003.	1.3	4
5	InAs quantum dot in a needlelike tapered InP nanowire: a telecom band single photon source monolithically grown on silicon. Nanoscale, 2019, 11, 21847-21855.	2.8	19
6	Determination of the spin orbit coupling and crystal field splitting in wurtzite InP by polarization resolved photoluminescence. Applied Physics Letters, 2018, 112, .	1.5	4
7	Electroluminescence of Colloidal Quantum Dots in Electrical Contact with Metallic Nanoparticles. Advanced Optical Materials, 2018, 6, 1700658.	3.6	9
8	Nanoscale investigation of a radial p–n junction in self-catalyzed GaAs nanowires grown on Si (111). Nanoscale, 2018, 10, 20207-20217.	2.8	10
9	Carrier dynamics of strain-engineered InAs quantum dots with (In)GaAs surrounding material. Journal of Optics (United Kingdom), 2017, 19, 025401.	1.0	8
10	<i>In situ</i> passivation of GaAsP nanowires. Nanotechnology, 2017, 28, 495707.	1.3	27
11	Study of the nucleation and growth of InP nanowires on silicon with gold-indium catalyst. Journal of Crystal Growth, 2017, 458, 96-102.	0.7	7
12	Detecting Spatially Localized Exciton in Self-Organized InAs/InGaAs Quantum Dot Superlattices: a Way to Improve the Photovoltaic Efficiency. Nanoscale Research Letters, 2017, 12, 450.	3.1	14
13	Pressure-Dependent Photoluminescence Study of Wurtzite InP Nanowires. Nano Letters, 2016, 16, 2926-2930.	4.5	21
14	Luminescent point defect formation in 3Câ€SiC by ion implantation. Physica Status Solidi C: Current Topics in Solid State Physics, 2016, 13, 860-863.	0.8	9
15	GaAs nanowires with oxidation-proof arsenic capping for the growth of an epitaxial shell. Nanoscale, 2016, 8, 15637-15644.	2.8	6
16	GaAs Core/SrTiO ₃ Shell Nanowires Grown by Molecular Beam Epitaxy. Nano Letters, 2016, 16, 2393-2399.	4.5	10
17	Optical and structural properties of InAs nanoclusters in crystalline Si obtained through sequential ion implantation and RTA. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2686-2691.	0.8	6
18	Optical polarization properties of InAs/InP quantum dot and quantum rod nanowires. Nanotechnology, 2015, 26, 395701.	1.3	14

NICOLAS CHAUVIN

#	Article	IF	CITATIONS
19	Low defect InGaAs quantum well selectively grown by metal organic chemical vapor deposition on Si(100) 300 mm wafers for next generation non planar devices. Applied Physics Letters, 2014, 104, .	1.5	42
20	Optical Simulation of Multijunction Solar Cells Based on III-V Nanowires on Silicon. Energy Procedia, 2014, 60, 109-115.	1.8	6
21	Piezoelectric effect in InAs/InP quantum rod nanowires grown on silicon substrate. Applied Physics Letters, 2014, 104, 183101.	1.5	7
22	Photoluminescence polarization and piezoelectric properties of InAs/InP quantum rod-nanowires. , 2014, , .		0
23	Quantum efficiency of InAs/InP nanowire heterostructures grown on silicon substrates. Physica Status Solidi - Rapid Research Letters, 2013, 7, 878-881.	1.2	Ο
24	Optimisation of the physical properties of InAs/InGaAs/GaAs QDs heterostructures embedded p-i-n GaAs solar cell. International Journal of Nanotechnology, 2013, 10, 433.	0.1	0
25	Polarization properties of single and ensembles of InAs/InP quantum rod nanowires emitting in the telecom wavelengths. Journal of Applied Physics, 2013, 113, 193101.	1.1	7
26	Excitonic properties of wurtzite InP nanowires grown on silicon substrate. Nanotechnology, 2013, 24, 035704.	1.3	24
27	Single photon sources for quantum information applications. , 2012, , .		Ο
28	Impact of substrate-induced strain and surface effects on the optical properties of InP nanowires. Applied Physics Letters, 2012, 101, 072101.	1.5	8
29	Quantum integrated photonics on GaAs. , 2012, , .		1
30	InAs/InP nanowires grown by catalyst assisted molecular beam epitaxy on silicon substrates. Journal of Crystal Growth, 2012, 344, 45-50.	0.7	17
31	Growth temperature dependence of exciton lifetime in wurtzite InP nanowires grown on silicon substrates. Applied Physics Letters, 2012, 100, .	1.5	23
32	Enhanced spontaneous emission from quantum dots in short photonic crystal waveguides. Applied Physics Letters, 2012, 100, 061122.	1.5	50
33	Wurtzite InP/InAs/InP core–shell nanowires emitting at telecommunication wavelengths on Si substrate. Nanotechnology, 2011, 22, 405702.	1.3	24
34	Single photons emitted by single quantum dots into waveguides: photon guns on a chip. , 2011, , .		1
35	InGaAs Quantum Dots Grown by Molecular Beam Epitaxy for Light Emission on Si Substrates. Journal of Nanoscience and Nanotechnology, 2011, 11, 9153-9159.	0.9	4
36	Nanophotonic technologies for single-photon devices. Opto-electronics Review, 2010, 18, .	2.4	3

NICOLAS CHAUVIN

#	Article	IF	CITATIONS
37	Optical and structural properties of INP nanowires grown on silicon substrate. , 2010, , .		0
38	Origin of the non-resonant quantum dot-cavity coupling. , 2010, , .		0
39	Controlling the charge environment of single quantum dots in a photonic-crystal cavity. Physical Review B, 2009, 80, .	1.1	55
40	Control of the spontaneous emission from a single quantum dash using a slow-light mode in a two-dimensional photonic crystal on a Bragg reflector. Physical Review B, 2009, 80, .	1.1	15
41	Low density 1.55â€,μm InAs/InGaAsP/InP (100) quantum dots enabled by an ultrathin GaAs interlayer. Applied Physics Letters, 2009, 95, 113110.	1.5	12
42	Cavity-enhanced photonic crystal light-emitting diode at 1300 nm. Microelectronic Engineering, 2009, 86, 1093-1095.	1.1	4
43	Controlling Energy and Charge Environment of Single Excitons in a Photonic-Crystal Diode. , 2009, , .		0
44	Towards a LED based on a photonic crystal nanocavity for single photon sources at telecom wavelength. Microelectronic Engineering, 2008, 85, 1162-1165.	1.1	3
45	Controlling the Aspect Ratio of Quantum Dots: From Columnar Dots to Quantum Rods. IEEE Journal of Selected Topics in Quantum Electronics, 2008, 14, 1204-1213.	1.9	17
46	Influence of surface reconstructions on the shape of InAs quantum dots grown on InP(001). , 2008, , .		1
47	Electrical injection of a photonic crystal nanocavity. , 2008, , .		0
48	Growth-interruption-induced low-density InAs quantum dots on GaAs. Journal of Applied Physics, 2008, 104, .	1.1	23
49	Enhanced spontaneous emission in a photonic-crystal light-emitting diode. Applied Physics Letters, 2008, 93, .	1.5	42
50	Shape-engineered epitaxial InGaAs quantum rods for laser applications. Applied Physics Letters, 2008, 92, 121102.	1.5	23
51	Enhancement of the recombination rate of InAs quantum dots in a photonic crystal light emitting diode. , 2008, , .		0
52	Enhanced spontaneous emission rate from single InAs quantum dots in a photonic crystal nanocavity at telecom wavelengths. Applied Physics Letters, 2007, 91, .	1.5	38
53	Enhanced spontaneous emission from InAs/GaAs quantum dots in pillar microcavities emitting at telecom wavelengths. Optics Letters, 2007, 32, 2747.	1.7	3
54	Control of the Spontaneous Emission of Single InAs Quantum Dots at 1.3μm in Point-Defect Photonic Crystal Nanocavities. , 2007, , .		0

NICOLAS CHAUVIN

#	Article	IF	CITATIONS
55	Single-Photon Detection System for Quantum Optics Applications. IEEE Journal of Selected Topics in Quantum Electronics, 2007, 13, 944-951.	1.9	37
56	Low density of self-assembled InAs quantum dots grown by solid-source molecular beam epitaxy on InP(001). Applied Physics Letters, 2006, 89, 123112.	1.5	19
57	Optical characterisation of single InAs quantum dots on GaAs substrate emitting at 1.3 μm. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3672-3675.	0.8	1
58	Shape and size effects on multi-exciton complexes in single InAs quantum dots grown on InP(001) substrate. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 3912-3915.	0.8	2
59	InAs/InP quantum dots: from single to coupled dots applications. Physica Status Solidi C: Current Topics in Solid State Physics, 2006, 3, 4039-4042.	0.8	1
60	Photoreflectance spectroscopy of self-organized InAs/InP(001) quantum sticks emitting at 1.55μm. Applied Surface Science, 2006, 253, 90-94.	3.1	7
61	Neutral and charged multi-exciton complexes in single InAs quantum dots grown on InP(001). Nanotechnology, 2006, 17, 1831-1834.	1.3	9
62	Size and shape effects on excitons and biexcitons in single InAsâ^•InP quantum dots. Journal of Applied Physics, 2006, 100, 073702.	1.1	18
63	Photoluminescence studies of stacked InAs/InP quantum sticks. Journal of Crystal Growth, 2005, 275, e2327-e2331.	0.7	4
64	Micro-photoluminescence study of single self-organized InAs/InP quantum sticks. Materials Science and Engineering C, 2005, 25, 650-653.	3.8	0
65	Optical investigation of single self-organized InAs/InP quantum dashes emitting in the 1.3–1.5 µm range. Nanotechnology, 2005, 16, 444-447.	1.3	5
66	Hexagonal Ge Grown by Molecular Beam Epitaxy on Self-Assisted GaAs Nanowires. Crystal Growth and Design, 0, , .	1.4	2