Qidong Tai

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8233974/qidong-tai-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

33	2,585	19	34
papers	citations	h-index	g-index
34 ext. papers	3,023 ext. citations	12.8 avg, IF	5.61 L-index

#	Paper	IF	Citations
33	In situ carbon coating for enhanced chemical stability of copper nanowires. <i>International Journal of Minerals, Metallurgy and Materials</i> , 2022 , 29, 557-562	3.1	O
32	Optimized crystallization and defect passivation with Yttrium (III) doped MAPbBr3 film for highly efficient and stable hole-transport-layer-free carbon-based perovskite solar cells. <i>Journal of Alloys and Compounds</i> , 2022 , 890, 161909	5.7	4
31	Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. <i>Chemical Engineering Journal</i> , 2022 , 136267	14.7	O
30	Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Non-Halide Engineering. <i>Advanced Energy Materials</i> , 2021 , 11, 2102169	21.8	7
29	2D materials for conducting holes from grain boundaries in perovskite solar cells. <i>Light: Science and Applications</i> , 2021 , 10, 68	16.7	26
28	Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. <i>Journal of Power Sources</i> , 2021 , 482, 228953	8.9	23
27	Synergistic effects of the zinc acetate additive on the performance enhancement of Sn-based perovskite solar cells. <i>Materials Chemistry Frontiers</i> , 2021 , 5, 1995-2000	7.8	2
26	Reducing the Energy Loss to Achieve High Open-circuit Voltage and Efficiency by Coordinating Energy-Level Matching in Sn P b Binary Perovskite Solar Cells. <i>Solar Rrl</i> , 2021 , 5, 2100287	7.1	10
25	FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. <i>ACS Applied Materials & Description (Materials & Descripti</i>	9.5	7
24	Solution-processed NiO x nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. <i>Journal Physics D: Applied Physics</i> , 2021 , 54, 144002	3	2
23	Extended Spiro Core-Based Nonfullerene Electron-Transporting Material for High-Performance Perovskite Solar Cells. <i>Advanced Functional Materials</i> , 2020 , 30, 2001073	15.6	10
22	Lead-Free Perovskite/Organic Semiconductor Vertical Heterojunction for Highly Sensitive Photodetectors. <i>ACS Applied Materials & Amp; Interfaces</i> , 2020 , 12, 18769-18776	9.5	16
21	Highly Air-Stable Tin-Based Perovskite Solar Cells through Grain-Surface Protection by Gallic Acid. <i>ACS Energy Letters</i> , 2020 , 5, 1741-1749	20.1	68
20	Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. <i>Journal of Power Sources</i> , 2020 , 451, 227825	8.9	27
19	Recent progress of inorganic perovskite solar cells. <i>Energy and Environmental Science</i> , 2019 , 12, 2375-24	1 95 .4	271
18	Solution-Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for High-Performance Solar Cells. <i>Advanced Materials</i> , 2019 , 31, e1807689	24	115
17	Sn-Based Perovskite for Highly Sensitive Photodetectors. <i>Advanced Science</i> , 2019 , 6, 1900751	13.6	73

LIST OF PUBLICATIONS

16	Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 26580-26585	13	65
15	Recent advances toward efficient and stable tin-based perovskite solar cells. <i>EcoMat</i> , 2019 , 1, e12004	9.4	33
14	Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells. <i>Angewandte Chemie</i> , 2019 , 131, 816-820	3.6	15
13	Antioxidant Grain Passivation for Air-Stable Tin-Based Perovskite Solar Cells. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 806-810	16.4	245
12	Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. <i>Solar Rrl</i> , 2018 , 2, 1800066	7.1	74
11	High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. <i>Electrochimica Acta</i> , 2018 , 260, 468-476	6.7	21
10	Emerging Semitransparent Solar Cells: Materials and Device Design. <i>Advanced Materials</i> , 2017 , 29, 1700	12912	154
9	Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. <i>Nature Communications</i> , 2016 , 7, 11105	17.4	389
8	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. <i>Advanced Materials</i> , 2015 , 27, 3632-8	24	387
7	A methylene bridged bisimidazolium iodide based low-volatility electrolyte for efficient dye-sensitized solar cells. <i>Journal of Renewable and Sustainable Energy</i> , 2013 , 5, 043121	2.5	1
6	Assays: Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients (Adv. Mater. 20/2012). <i>Advanced Materials</i> , 2012 , 24, 2755-	2 7 55	3
5	In situ prepared transparent polyaniline electrode and its application in bifacial dye-sensitized solar cells. <i>ACS Nano</i> , 2011 , 5, 3795-9	16.7	357
4	Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol. <i>Journal of Materials Chemistry</i> , 2011 , 21, 6848		64
3	Investigation of High-Performance Air-Processed Poly(3-hexylthiophene)/Methanofullerene Bulk-Heterojunction Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 21873-21877	3.8	40
2	Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by rf magnetron sputtering. <i>Applied Physics Letters</i> , 2008 , 92, 122106	3.4	63
1	NiO x Nanocrystals with Tunable Size and Energy Levels for Efficient and UV Stable Perovskite Solar Cells. <i>Advanced Functional Materials</i> ,2203049	15.6	3