
Qidong Tai

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233974/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Efficient and stable perovskite solar cells prepared in ambient air irrespective of the humidity. Nature Communications, 2016, 7, 11105.	5.8	488
2	Efficient Semitransparent Perovskite Solar Cells with Graphene Electrodes. Advanced Materials, 2015, 27, 3632-3638.	11.1	456
3	Recent progress of inorganic perovskite solar cells. Energy and Environmental Science, 2019, 12, 2375-2405.	15.6	405
4	<i>In Situ</i> Prepared Transparent Polyaniline Electrode and Its Application in Bifacial Dye-Sensitized Solar Cells. ACS Nano, 2011, 5, 3795-3799.	7.3	383
5	Antioxidant Grain Passivation for Air‣table Tinâ€Based Perovskite Solar Cells. Angewandte Chemie - International Edition, 2019, 58, 806-810.	7.2	369
6	Emerging Semitransparent Solar Cells: Materials and Device Design. Advanced Materials, 2017, 29, 1700192.	11.1	200
7	Solutionâ€Phase Epitaxial Growth of Perovskite Films on 2D Material Flakes for Highâ€Performance Solar Cells. Advanced Materials, 2019, 31, e1807689.	11.1	185
8	Highly Air-Stable Tin-Based Perovskite Solar Cells through Grain-Surface Protection by Gallic Acid. ACS Energy Letters, 2020, 5, 1741-1749.	8.8	126
9	Snâ€Based Perovskite for Highly Sensitive Photodetectors. Advanced Science, 2019, 6, 1900751.	5.6	118
10	Enhanced performance of tin-based perovskite solar cells induced by an ammonium hypophosphite additive. Journal of Materials Chemistry A, 2019, 7, 26580-26585.	5.2	98
11	Performance Enhancement of Perovskite Solar Cells Induced by Lead Acetate as an Additive. Solar Rrl, 2018, 2, 1800066.	3.1	94
12	Improvement in dye-sensitized solar cells with a ZnO-coated TiO2 electrode by rf magnetron sputtering. Applied Physics Letters, 2008, 92, .	1.5	67
13	Enhanced photovoltaic performance of polymer solar cells by adding fullerene end-capped polyethylene glycol. Journal of Materials Chemistry, 2011, 21, 6848.	6.7	67
14	2D materials for conducting holes from grain boundaries in perovskite solar cells. Light: Science and Applications, 2021, 10, 68.	7.7	59
15	Recent advances toward efficient and stable tinâ€based perovskite solar cells. EcoMat, 2019, 1, e12004.	6.8	58
16	Efficient and stable flexible perovskite solar cells based on graphene-AgNWs substrate and carbon electrode without hole transport materials. Journal of Power Sources, 2021, 482, 228953.	4.0	49
17	Fluorinated Interfaces for Efficient and Stable Lowâ€Temperature Carbonâ€Based CsPbI ₂ Br Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	45
18	Two dimensional graphitic carbon nitride quantum dots modified perovskite solar cells and photodetectors with high performances. Journal of Power Sources, 2020, 451, 227825.	4.0	44

QIDONG TAI

#	Article	IF	CITATIONS
19	Investigation of High-Performance Air-Processed Poly(3-hexylthiophene)/Methanofullerene Bulk-Heterojunction Solar Cells. Journal of Physical Chemistry C, 2010, 114, 21873-21877.	1.5	41
20	Achieving Efficient and Stable Perovskite Solar Cells in Ambient Air Through Nonâ€Halide Engineering. Advanced Energy Materials, 2021, 11, 2102169.	10.2	35
21	NiO _x Nanocrystals with Tunable Size and Energy Levels for Efficient and UV Stable Perovskite Solar Cells. Advanced Functional Materials, 2022, 32, .	7.8	32
22	Lead-Free Perovskite/Organic Semiconductor Vertical Heterojunction for Highly Sensitive Photodetectors. ACS Applied Materials & Interfaces, 2020, 12, 18769-18776.	4.0	29
23	High performance planar perovskite solar cells based on CH3NH3PbI3-x(SCN)x perovskite film and SnO2 electron transport layer prepared in ambient air with 70% humility. Electrochimica Acta, 2018, 260, 468-476.	2.6	27
24	FA/MA Cation Exchange for Efficient and Reproducible Tin-Based Perovskite Solar Cells. ACS Applied Materials & Interfaces, 2021, 13, 40656-40663.	4.0	24
25	Antioxidant Grain Passivation for Air‣table Tinâ€Based Perovskite Solar Cells. Angewandte Chemie, 2019, 131, 816-820.	1.6	22
26	Reducing the Energy Loss to Achieve High Openâ€circuit Voltage and Efficiency by Coordinating Energy‣evel Matching in Sn–Pb Binary Perovskite Solar Cells. Solar Rrl, 2021, 5, 2100287.	3.1	19
27	Ï€â€Extended Spiro Coreâ€Based Nonfullerene Electronâ€Transporting Material for Highâ€Performance Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2001073.	7.8	12
28	Modulated crystal growth enables efficient and stable perovskite solar cells in humid air. Chemical Engineering Journal, 2022, 442, 136267.	6.6	9
29	Solution-processed NiO _x nanoparticles with a wide pH window as an efficient hole transport material for high performance tin-based perovskite solar cells. Journal Physics D: Applied Physics, 2021, 54, 144002.	1.3	8
30	Synergistic effects of the zinc acetate additive on the performance enhancement of Sn-based perovskite solar cells. Materials Chemistry Frontiers, 2021, 5, 1995-2000.	3.2	5
31	Optimized crystallization and defect passivation with Yttrium (III) doped MAPbBr3 film for highly efficient and stable hole-transport-layer-free carbon-based perovskite solar cells. Journal of Alloys and Compounds, 2022, 890, 161909.	2.8	5
32	In situ carbon coating for enhanced chemical stability of copper nanowires. International Journal of Minerals, Metallurgy and Materials, 2022, 29, 557-562.	2.4	4
33	Assays: Electrospun TiO2 Nanofiber-Based Cell Capture Assay for Detecting Circulating Tumor Cells from Colorectal and Gastric Cancer Patients (Adv. Mater. 20/2012). Advanced Materials, 2012, 24, 2755-2755.	11.1	3
34	A methylene bridged bisimidazolium iodide based low-volatility electrolyte for efficient dye-sensitized solar cells. Journal of Renewable and Sustainable Energy, 2013, 5, 043121.	0.8	1