
Carl-Johan Carlhäll

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233821/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Automatic Timeâ€Resolved Cardiovascular Segmentation of <scp>4D</scp> Flow <scp>MRI</scp> Using Deep Learning. Journal of Magnetic Resonance Imaging, 2023, 57, 191-203.	1.9	13
2	Simultaneous Assessment of Left Atrial Fibrosis and Epicardial Adipose Tissue Using <scp>3D</scp> Late Gadolinium Enhanced Dixon <scp>MRI</scp> . Journal of Magnetic Resonance Imaging, 2022, 56, 1393-1403.	1.9	3
3	Non-contrast myocardial perfusion in rest and exercise stress using systolic flow-sensitive alternating inversion recovery. Magnetic Resonance Materials in Physics, Biology, and Medicine, 2022, 35, 711-718.	1.1	0
4	Turbulent Intensity of Blood Flow in the Healthy Aorta Increases With Dobutamine Stress and is Related to Cardiac Output. Frontiers in Physiology, 2022, 13, .	1.3	6
5	Threeâ€dimensional echocardiography to identify right ventricular dilatation in patients with corrected Fallot anomaly or pulmonary stenosis. Clinical Physiology and Functional Imaging, 2021, 41, 51-61.	0.5	4
6	Myocardial arterial spin labeling in systole and diastole using flowâ€sensitive alternating inversion recovery with parallel imaging and compressed sensing. NMR in Biomedicine, 2021, 34, e4436.	1.6	6
7	Using Deep Learning to Emulate the Use of an External Contrast Agent in Cardiovascular 4D Flow MRI. Journal of Magnetic Resonance Imaging, 2021, 54, 777-786.	1.9	9
8	Impact of prosthetic mitral valve orientation on the ventricular flow field: Comparison using patient-specific computational fluid dynamics. Journal of Biomechanics, 2021, 116, 110209.	0.9	14
9	Evaluating the prevalence and severity of NAFLD in primary care: the EPSONIP study protocol. BMC Gastroenterology, 2021, 21, 180.	0.8	5
10	Circulating microRNAâ€29â€5p can add to the discrimination between dilated cardiomyopathy and ischaemic heart disease. ESC Heart Failure, 2021, 8, 3865-3874.	1.4	4
11	Data Quality and Optimal Background Correction Order of Respiratoryâ€Gated k â€Space Segmented Spoiled Gradient Echo (SGRE) and Echo Planar Imaging (EPI)â€Based 4D Flow MRI. Journal of Magnetic Resonance Imaging, 2020, 51, 885-896.	1.9	7
12	Assessment of mitral valve regurgitation by cardiovascular magnetic resonance imaging. Nature Reviews Cardiology, 2020, 17, 298-312.	6.1	103
13	Quantification of epicardial fat using 3D cine Dixon MRI. BMC Medical Imaging, 2020, 20, 80.	1.4	8
14	Improved Efficiency of Intraventricular Blood Flow Transit Under Cardiac Stress: A 4D Flow Dobutamine CMR Study. Frontiers in Cardiovascular Medicine, 2020, 7, 581495.	1.1	10
15	Inflow artifact reduction using an adaptive flipâ€angle navigator restore pulse for late gadolinium enhancement of the left atrium. Magnetic Resonance in Medicine, 2020, 84, 3308-3315.	1.9	3
16	Endocrine and Mechanical Cardiacfunction Four Months after Radiofrequency Ablation of Atrialfibrillation. Journal of Atrial Fibrillation, 2020, 14, 20200454.	0.5	1
17	Post-cardioversion Improvement in LV Function Defined by 4D Flow Patterns and Energetics in Patients With Atrial Fibrillation. Frontiers in Physiology, 2019, 10, 659.	1.3	8
18	Echocardiographic and Biochemical Factors Predicting Arrhythmia Recurrence After Catheter Ablation of Atrial Fibrillation—An Observational Study. Frontiers in Physiology, 2019, 10, 1215.	1.3	5

#	Article	IF	CITATIONS
19	Impact of Pulmonary Venous Inflow on Cardiac Flow Simulations: Comparison with In Vivo 4D Flow MRI. Annals of Biomedical Engineering, 2019, 47, 413-424.	1.3	31
20	Left Ventricular Flow Analysis. Circulation: Cardiovascular Imaging, 2019, 12, e008130.	1.3	41
21	Longitudinal changes in myocardial T ₁ and T ₂ relaxation times related to diffuse myocardial fibrosis in aortic stenosis; before and after aortic valve replacement. Journal of Magnetic Resonance Imaging, 2018, 48, 799-807.	1.9	8
22	Improving left ventricular segmentation in fourâ€dimensional flow MRI using intramodality image registration for cardiac blood flow analysis. Magnetic Resonance in Medicine, 2018, 79, 554-560.	1.9	13
23	Fixed volume particle trace emission for the analysis of left atrial blood flow using 4D Flow MRI. Magnetic Resonance Imaging, 2018, 47, 83-88.	1.0	11
24	Mechanical dyssynchrony alters left ventricular flow energetics in failing hearts with LBBB: a 4D flow CMR pilot study. International Journal of Cardiovascular Imaging, 2018, 34, 587-596.	0.7	12
25	Turbulent kinetic energy in the right ventricle: Potential MR marker for risk stratification of adults with repaired Tetralogy of Fallot. Journal of Magnetic Resonance Imaging, 2018, 47, 1043-1053.	1.9	34
26	Non-invasive Assessment of Systolic and Diastolic Cardiac Function During Rest and Stress Conditions Using an Integrated Image-Modeling Approach. Frontiers in Physiology, 2018, 9, 1515.	1.3	10
27	Afterload dependence of right ventricular myocardial deformation: A comparison between tetralogy of Fallot and atrially corrected transposition of the great arteries in adult patients. PLoS ONE, 2018, 13, e0204435.	1.1	1
28	Intracardiac Flow at 4D CT: Comparison with 4D Flow MRI. Radiology, 2018, 289, 51-58.	3.6	35
29	Age-Related Vascular Changes Affect Turbulence in Aortic Blood Flow. Frontiers in Physiology, 2018, 9, 36.	1.3	50
30	Automated multi-atlas segmentation of cardiac 4D flow MRI. Medical Image Analysis, 2018, 49, 128-140.	7.0	30
31	Clinical feasibility of 3D-QALAS – Single breath-hold 3D myocardial T1- and T2-mapping. Magnetic Resonance Imaging, 2017, 38, 13-20.	1.0	24
32	Creating hemodynamic atlases of cardiac 4D flow MRI. Journal of Magnetic Resonance Imaging, 2017, 46, 1389-1399.	1.9	24
33	Bridging the gap between measurements and modelling: a cardiovascular functional avatar. Scientific Reports, 2017, 7, 6214.	1.6	40
34	Left ventricular hemodynamic forces as a marker of mechanical dyssynchrony in heart failure patients with left bundle branch block. Scientific Reports, 2017, 7, 2971.	1.6	35
35	Left Atrial 4D Blood Flow Dynamics and Hemostasis following Electrical Cardioversion of Atrial Fibrillation. Frontiers in Physiology, 2017, 8, 1052.	1.3	30
36	4D flow MRI can detect subtle right ventricular dysfunction in primary left ventricular disease. Journal of Magnetic Resonance Imaging, 2016, 43, 558-565.	1.9	40

CARL-JOHAN CARLHÃ

#	Article	IF	CITATIONS
37	Retrospectively gated intracardiac 4 <scp>D</scp> flow <scp>MRI</scp> using spiral trajectories. Magnetic Resonance in Medicine, 2016, 75, 196-206.	1.9	22
38	Quantification of turbulence and velocity in stenotic flow using spiral threeâ€dimensional phaseâ€contrast MRI. Magnetic Resonance in Medicine, 2016, 75, 1249-1255.	1.9	20
39	4D Phase-Contrast Magnetic Resonance CardioAngiography (4D PC-MRCA) Creation from 4D Flow MRI. Lecture Notes in Computer Science, 2016, , 519-526.	1.0	2
40	Myocardial mapping of T1 and T2 with 3D-QALAS - precision of independent and dependent scans in healthy subjects. Journal of Cardiovascular Magnetic Resonance, 2016, 18, P11.	1.6	0
41	Differences in cardiovascular toxicities associated with cigarette smoking and snuff use revealed using novel zebrafish models. Biology Open, 2016, 5, 970-978.	0.6	19
42	Phase-contrast MRI volume flow – a comparison of breath held and navigator based acquisitions. BMC Medical Imaging, 2016, 16, 26.	1.4	20
43	Assessment of left ventricular hemodynamic forces in healthy subjects and patients with dilated cardiomyopathy using 4D flow MRI. Physiological Reports, 2016, 4, e12685.	0.7	48
44	Improving visualization of 4D flow cardiovascular magnetic resonance with four-dimensional angiographic data: generation of a 4D phase-contrast magnetic resonance CardioAngiography (4D) Tj ETQq0 0 () rgBa /Ov	erl as k 10 Tf 5
45	Altered Diastolic Flow Patterns and Kinetic Energy in Subtle Left Ventricular Remodeling and Dysfunction Detected by 4D Flow MRI. PLoS ONE, 2016, 11, e0161391.	1.1	53
46	Spatial heterogeneity of fourâ€dimensional relative pressure fields in the human left ventricle. Magnetic Resonance in Medicine, 2015, 74, 1716-1725.	1.9	11
47	Turbulent kinetic energy in normal and myopathic left ventricles. Journal of Magnetic Resonance Imaging, 2015, 41, 1021-1029.	1.9	62
48	Atlas-based analysis of 4D flow CMR: Automated vessel segmentation and flow quantification. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 87.	1.6	48
49	Reproducibility and variability of left ventricular 4D flow in healthy volunteers. Journal of Cardiovascular Magnetic Resonance, 2015, 17, P7.	1.6	1
50	4D flow cardiovascular magnetic resonance consensus statement. Journal of Cardiovascular Magnetic Resonance, 2015, 17, 72.	1.6	642
51	Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. Journal of Cardiovascular Magnetic Resonance, 2014, 16, 102.	1.6	105
52	Four-dimensional blood flow-specific markers of LV dysfunction in dilated cardiomyopathy. European Heart Journal Cardiovascular Imaging, 2013, 14, 417-424.	0.5	131
53	Contribution of myocardium overlying the anterolateral papillary muscle to left ventricular deformation. American Journal of Physiology - Heart and Circulatory Physiology, 2012, 302, H180-H187.	1.5	3
54	Spiral readouts for 4D flow MRI. Journal of Cardiovascular Magnetic Resonance, 2012, 14, .	1.6	3

Carl-Johan CarlhäL

#	Article	IF	CITATIONS
55	Fourâ€dimensional flow MRI using spiral acquisition. Magnetic Resonance in Medicine, 2012, 68, 1065-1073.	1.9	52
56	4-D blood flow in the human right ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 301, H2344-H2350.	1.5	111
57	Diastolic preparation for left ventricular ejection - A marker of inefficiency of the failing heart. Journal of Cardiovascular Magnetic Resonance, 2011, 13, .	1.6	0
58	Hemodynamic aspects of mitral regurgitation assessed by generalized phaseâ€contrast MRI. Journal of Magnetic Resonance Imaging, 2011, 33, 582-588.	1.9	36
59	Quantification of presystolic blood flow organization and energetics in the human left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 2011, 300, H2135-H2141.	1.5	110
60	Semi-automatic quantification of 4D left ventricular blood flow. Journal of Cardiovascular Magnetic Resonance, 2010, 12, 9.	1.6	170
61	Quantification of 4D left ventricular blood flow organization in normal and failing hearts. Journal of Cardiovascular Magnetic Resonance, 2010, 12, .	1.6	1
62	Passing Strange. Circulation: Heart Failure, 2010, 3, 326-331.	1.6	102
63	Regional mitral leaflet opening during acute ischemic mitral regurgitation. Journal of Heart Valve Disease, 2009, 18, 586-96; discussion 597.	0.5	2
64	Effects of acute ischemic mitral regurgitation on three-dimensional mitral leaflet edge geometryâ~†â~†â~†. European Journal of Cardio-thoracic Surgery, 2008, 33, 191-197.	0.6	8
65	Transit of Blood Flow Through the Human Left Ventricle Mapped by Cardiovascular Magnetic Resonance. Journal of Cardiovascular Magnetic Resonance, 2007, 9, 741-747.	1.6	187