Elvira López-Tamames

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233601/publications.pdf

Version: 2024-02-01

147726 175177 2,722 57 31 52 citations g-index h-index papers 57 57 57 2499 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Analysis of virgin olive oil volatile compounds by headspace solid-phase microextraction coupled to gas chromatography with mass spectrometric and flame ionization detection. Journal of Chromatography A, 2003, 983, 19-33.	1.8	219
2	Solid-Phase Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction:Â Modifications Induced by Oxidation and Suitable Markers of Oxidative Status. Journal of Agricultural and Food Chemistry, 2003, 51, 6564-6571.	2.4	161
3	Characterisation of volatile compounds of fruit juices and nectars by HS/SPME and GC/MS. Food Chemistry, 2004, 87, 627-637.	4.2	143
4	Solid-Phase Microextraction in the Analysis of Virgin Olive Oil Volatile Fraction:Â Characterization of Virgin Olive Oils from Two Distinct Geographical Areas of Northern Italy. Journal of Agricultural and Food Chemistry, 2003, 51, 6572-6577.	2.4	133
5	Assessment of the aroma profiles of low-alcohol beers using HS-SPME–GC-MS. Food Research International, 2014, 57, 196-202.	2.9	105
6	Different commercial yeast strains affecting the volatile and sensory profile of cava base wine. International Journal of Food Microbiology, 2008, 124, 48-57.	2.1	97
7	Development of volatile compounds of cava (Spanish sparkling wine) during long ageing time in contact with lees. Food Chemistry, 2006, 95, 237-242.	4.2	96
8	Volatile profiles of sparkling wines obtained by three extraction methods and gas chromatography–mass spectrometry (GC–MS) analysis. Food Chemistry, 2007, 105, 428-435.	4.2	93
9	Simultaneous determination of volatile and semi-volatile aromatic hydrocarbons in virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Journal of Chromatography A, 2005, 1090, 146-154.	1.8	88
10	Assessment of Volatile and Sensory Profiles between Base and Sparkling Wines. Journal of Agricultural and Food Chemistry, 2010, 58, 2455-2461.	2.4	82
11	Comparative study of different extraction techniques for the analysis of virgin olive oil aroma. Food Chemistry, 2007, 105, 1171-1178.	4.2	75
12	Potential Aroma in Several Varieties of Spanish Grapes. Journal of Agricultural and Food Chemistry, 1997, 45, 1729-1735.	2.4	72
13	Volatile Compounds of Red and White Wines by Headspace-Solid-Phase Microextraction Using Different Fibers. Journal of Chromatographic Science, 2004, 42, 310-316.	0.7	71
14	Volatile and semi-volatile components of oak wood chips analysed by Accelerated Solvent Extraction (ASE) coupled to gas chromatography–mass spectrometry (GC–MS). Food Chemistry, 2007, 102, 1260-1269.	4.2	71
15	Membrane separation technology for the reduction of alcoholic degree of a white model wine. LWT - Food Science and Technology, 2009, 42, 1390-1395.	2.5	63
16	Characteristics of Sparkling Base Wines Affecting Foam Behavior. Journal of Agricultural and Food Chemistry, 1996, 44, 989-995.	2.4	62
17	Characterization of Volatiles in Different Dry Gins. Journal of Agricultural and Food Chemistry, 2005, 53, 10154-10160.	2.4	53
18	Monoterpene and sesquiterpene hydrocarbons of virgin olive oil by headspace solid-phase microextraction coupled to gas chromatography/mass spectrometry. Journal of Chromatography A, 2006, 1125, 117-123.	1.8	50

#	Article	IF	Citations
19	HS-SPME coupled to GC/MS for quality control of Juniperus communis L. berries used for gin aromatization. Food Chemistry, 2007, 105, 1748-1754.	4.2	49
20	Influence of Variety and Aging on Foaming Properties of Sparkling Wine (Cava). 1. Journal of Agricultural and Food Chemistry, 1996, 44, 3826-3829.	2.4	46
21	Assessment of the Volatile Composition of Juices of Apricot, Peach, and Pear According to Two Pectolytic Treatments. Journal of Agricultural and Food Chemistry, 2005, 53, 7837-7843.	2.4	46
22	Characterisation of volatile composition of white salsify (Tragopogon porrifolius L.) by headspace solid-phase microextraction (HS-SPME) and simultaneous distillation–extraction (SDE) coupled to GC–MS. Food Chemistry, 2011, 129, 557-564.	4.2	39
23	Identification of 5-hydroxymethyl-2-furfural (5-HMF) in Cava sparkling wines by LC-DAD-MS/MS and NMR spectrometry. Food Chemistry, 2013, 141, 3373-3380.	4.2	38
24	Foam Aptitude of Trepat and Monastrell Red Varieties in Cava Elaboration. 1. Base Wine Characteristics. Journal of Agricultural and Food Chemistry, 2002, 50, 5596-5599.	2.4	36
25	Influence of Fatty Acids on Wine Foaming. Journal of Agricultural and Food Chemistry, 2002, 50, 7042-7045.	2.4	36
26	Relationship between foam parameters obtained by the gas-sparging method and sensory evaluation of sparkling wines. Journal of the Science of Food and Agriculture, 2004, 84, 127-133.	1.7	36
27	Antioxidant activity of lees cell surface during sparkling wine sur lie aging. International Journal of Food Microbiology, 2010, 143, 48-53.	2.1	36
28	Determination of free fatty acids and their ethyl esters in musts and wines. Journal of Chromatography A, 1997, 776, 283-291.	1.8	35
29	Changes in the Sorption of Diverse Volatiles by <i>Saccharomyces cerevisiae</i> Lees during Sparkling Wine Aging. Journal of Agricultural and Food Chemistry, 2010, 58, 12426-12430.	2.4	35
30	Analysis of Sparkling Wine Lees Surface Volatiles by Optimized Headspace Solid-Phase Microextraction. Journal of Agricultural and Food Chemistry, 2009, 57, 3279-3285.	2.4	34
31	Kinetics of Browning, Phenolics, and 5-Hydroxymethylfurfural in Commercial Sparkling Wines. Journal of Agricultural and Food Chemistry, 2014, 62, 1159-1166.	2.4	34
32	Quality of base and sparkling wines as influenced by the type of fining agent added pre-fermentation. Food Chemistry, 1999, 66, 35-42.	4.2	33
33	Volatile phenols in virgin olive oils: Influence of olive variety on their formation during fruits storage. Food Chemistry, 2009, 116, 651-656.	4.2	30
34	Browning during biological aging and commercial storage of Cava sparkling wine and the use of 5-HMF as a quality marker. Food Research International, 2013, 53, 226-231.	2.9	30
35	Foaming in Grape Juices of White Varieties. Journal of Agricultural and Food Chemistry, 1997, 45, 2526-2529.	2.4	29
36	Foam Aptitude of Trepat and Monastrell Red Varieties in Cava Elaboration. 2. Second Fermentation and Aging. Journal of Agricultural and Food Chemistry, 2002, 50, 5600-5604.	2.4	29

#	Article	IF	Citations
37	Sparkling Wines: Features and Trends from Tradition. Advances in Food and Nutrition Research, 2012, 66, 1-45.	1.5	26
38	Improved size-exclusion high-performance liquid chromatographic method for the simple analysis of grape juice and wine polysaccharides. Journal of Chromatography A, 1998, 823, 339-347.	1.8	25
39	The occurrence of volatile and semi-volatile aromatic hydrocarbons in virgin olive oils from north-eastern Italy. Food Control, 2007, 18, 1204-1210.	2.8	25
40	Assessment of some diterpenoids in commercial distilled gin. Analytica Chimica Acta, 2008, 628, 222-229.	2.6	25
41	Influence of Olives' Storage Conditions on the Formation of Volatile Phenols and Their Role in Off-Odor Formation in the Oil. Journal of Agricultural and Food Chemistry, 2009, 57, 1449-1455.	2.4	25
42	Ultrastructural changes of sparkling wine lees during long-term aging in real enological conditions. FEMS Yeast Research, 2012, 12, 466-476.	1.1	21
43	Effect of grape pectic enzyme treatment on foaming properties of white musts and wines. Food Chemistry, 1999, 65, 169-173.	4.2	20
44	Viability of total phenol index value as quality marker of sparkling wines, "cavas― Food Chemistry, 2009, 114, 782-790.	4.2	20
45	Surface properties of Saccharomyces cerevisiae lees during sparkling wine ageing and their effect on flocculation. International Journal of Food Microbiology, 2010, 140, 125-130.	2.1	19
46	Evolution of Sesquiterpene Hydrocarbons in Virgin Olive Oil during Fruit Ripening. Journal of Agricultural and Food Chemistry, 2010, 58, 6972-6976.	2.4	18
47	Pectic Enzyme Treatment Effects on Quality of White Grape Musts and Wines. Journal of Food Science, 1997, 62, 1142-1149.	1.5	17
48	Foam Measurements in Wines:Â Comparison of Parameters Obtained by Gas Sparging Method. Journal of Agricultural and Food Chemistry, 1997, 45, 4687-4690.	2.4	16
49	Influence of Yield and Maturation Index on Polysaccharides and Other Compounds of Grape Juice. Journal of Agricultural and Food Chemistry, 2002, 50, 4604-4607.	2.4	14
50	Ultrahigh-Performance Liquid Chromatography (UHPLC)–Tandem Mass Spectrometry (MS/MS) Quantification of Nine Target Indoles in Sparkling Wines. Journal of Agricultural and Food Chemistry, 2016, 64, 4772-4776.	2.4	14
51	Sensory Characterization of Dry Gins with Different Volatile Profiles. Journal of Food Science, 2008, 73, S286-93.	1.5	13
52	Prediction of Wine Foaming. Journal of Agricultural and Food Chemistry, 1999, 47, 3743-3748.	2.4	12
53	Influence of Process Parameters on Sourdough Microbiota, Physical Properties and Sensory Profile. Food Reviews International, 2023, 39, 334-348.	4.3	8
54	Changes in RNA Catabolites of Sparkling Wines During the Biological Aging. Journal of Agricultural and Food Chemistry, 2013, 61, 6028-6035.	2.4	6

#	Article	IF	CITATIONS
55	Inhibition of Biogenic Amines Formation in Fermented Foods by the Addition of Cava Lees. Frontiers in Microbiology, 2021, 12, 818565.	1.5	6
56	By-Product Revalorization: Cava Lees Can Improve the Fermentation Process and Change the Volatile Profile of Bread. Foods, 2022, $11,1361.$	1.9	4
57	Revalorization of Cava (Spanish Sparkling Wine) Lees on Sourdough Fermentation. Fermentation, 2022, 8, 133.	1.4	3