Karl J Koebke

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233495/publications.pdf

Version: 2024-02-01

840776 888059 24 321 11 17 citations h-index g-index papers 24 24 24 355 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Catalysis and Electron Transfer in <i>De Novo</i> Designed Metalloproteins. Chemical Reviews, 2022, 122, 12046-12109.	47.7	25
2	The pHâ€Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial αâ€Helical Metalloprotein. Angewandte Chemie - International Edition, 2021, 60, 3974-3978.	13.8	10
3	The pHâ€Induced Selectivity Between Cysteine or Histidine Coordinated Heme in an Artificial αâ€Helical Metalloprotein. Angewandte Chemie, 2021, 133, 4020-4024.	2.0	2
4	Kinetic Analysis of Transient Intermediates in the Mechanism of Prenyl-Flavin-Dependent Ferulic Acid Decarboxylase. Biochemistry, 2021, 60, 125-134.	2.5	6
5	Molecular Structure of the Surface-Immobilized Super Uranyl Binding Protein. Journal of Physical Chemistry B, 2021, 125, 7706-7716.	2.6	21
6	Nitrite reductase activity within an antiparallel de novo scaffold. Journal of Biological Inorganic Chemistry, 2021, 26, 855-862.	2.6	4
7	New Orange Ligand-Dependent Fluorescent Reporter for Anaerobic Imaging. ACS Chemical Biology, 2021, 16, 2109-2115.	3.4	9
8	Catalysis and Electron Transfer in Deâ€Novo Designed Helical Scaffolds. Angewandte Chemie - International Edition, 2020, 59, 7678-7699.	13.8	25
9	Katalyse und Elektronentransfer in helikalen Deâ€novoâ€Gerüststrukturen. Angewandte Chemie, 2020, 132, 7750-7773.	2.0	5
10	Refinement of protein Fe(II) binding characteristics utilizing a competition assay exploiting small molecule ferrous chelators. Journal of Inorganic Biochemistry, 2020, 203, 110882.	3.5	7
11	Rational De Novo Design of a Cu Metalloenzyme for Superoxide Dismutation. Chemistry - A European Journal, 2020, 26, 249-258.	3.3	16
12	Traversing the Red–Green–Blue Color Spectrum in Rationally Designed Cupredoxins. Journal of the American Chemical Society, 2020, 142, 15282-15294.	13.7	10
13	Making or Breaking Metalâ€Dependent Catalytic Activity: The Role of Stammers in Designed Threeâ€Stranded Coiled Coils. Angewandte Chemie, 2020, 132, 20625-20629.	2.0	0
14	Making or Breaking Metalâ€Dependent Catalytic Activity: The Role of Stammers in Designed Threeâ€Stranded Coiled Coils. Angewandte Chemie - International Edition, 2020, 59, 20445-20449.	13.8	10
15	Probing Metal Ion Discrimination in a Protein Designed to Bind Uranyl Cation With Femtomolar Affinity. Frontiers in Molecular Biosciences, 2019, 6, 73.	3 . 5	6
16	Methylated Histidines Alter Tautomeric Preferences that Influence the Rates of Cu Nitrite Reductase Catalysis in Designed Peptides. Journal of the American Chemical Society, 2019, 141, 7765-7775.	13.7	15
17	Noncoded Amino Acids in <i>de Novo</i> Metalloprotein Design: Controlling Coordination Number and Catalysis. Accounts of Chemical Research, 2019, 52, 1160-1167.	15.6	13
18	Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity. Angewandte Chemie, 2018, 130, 4018-4021.	2.0	8

#	ARTICLE	IF	CITATION
19	Modifying the Steric Properties in the Second Coordination Sphere of Designed Peptides Leads to Enhancement of Nitrite Reductase Activity. Angewandte Chemie - International Edition, 2018, 57, 3954-3957.	13.8	23
20	Clarifying the Copper Coordination Environment in a <i>de Novo</i> Designed Red Copper Protein. Inorganic Chemistry, 2018, 57, 12291-12302.	4.0	19
21	Development of de Novo Copper Nitrite Reductases: Where We Are and Where We Need To Go. ACS Catalysis, 2018, 8, 8046-8057.	11.2	16
22	Direct Monitoring of the Reaction between Photochemically Generated Nitric Oxide and <i>Mycobacterium tuberculosis</i> Truncated Hemoglobin N Wild Type and Variant Forms: An Assessment of Computational Mechanistic Predictions. Biochemistry, 2016, 55, 686-696.	2.5	9
23	Does the Oxidation of Nitric Oxide by oxyMyoglobin Share an Intermediate with the metMyoglobin-Catalyzed Isomerization of Peroxynitrite?. Inorganic Chemistry, 2013, 52, 7623-7632.	4.0	24
24	Polar Mixed-Solid Solute Systems in Supercritical Carbon Dioxide: Entrainer Effect and Its Influence on Solubility and Selectivity. Journal of Chemical & Engineering Data, 2008, 53, 415-421.	1.9	38