Robin R Ingalls

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233220/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Toll-like Receptor 2 Functions as a Pattern Recognition Receptor for Diverse Bacterial Products. Journal of Biological Chemistry, 1999, 274, 33419-33425.	1.6	825
2	Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. Journal of Clinical Investigation, 2000, 105, 497-504.	3.9	678
3	Response to <i>Neisseria gonorrhoeae</i> by Cervicovaginal Epithelial Cells Occurs in the Absence of Toll-Like Receptor 4-Mediated Signaling. Journal of Immunology, 2002, 168, 2424-2432.	0.4	226
4	Toll-like receptors. Critical Care Medicine, 2002, 30, S1-S11.	0.4	223
5	Divergent Response to LPS and Bacteria in CD14-Deficient Murine Macrophages. Journal of Immunology, 2000, 165, 4272-4280.	0.4	205
6	Plasmid-Deficient <i>Chlamydia muridarum</i> Fail to Induce Immune Pathology and Protect against Oviduct Disease. Journal of Immunology, 2007, 179, 4027-4034.	0.4	185
7	Targeted Deletion of the Lipopolysaccharide (LPS)-binding Protein Gene Leads to Profound Suppression of LPS Responses Ex Vivo, whereas In Vivo Responses Remain Intact. Journal of Experimental Medicine, 1997, 186, 2051-2056.	4.2	171
8	Induction of Tolerance to Lipopolysaccharide and Mycobacterial Components in Chinese Hamster Ovary/CD14 Cells Is Not Affected by Overexpression of Toll-Like Receptors 2 or 4. Journal of Immunology, 2001, 167, 2257-2267.	0.4	151
9	Inflammation and Fibrosis during <i>Chlamydia pneumoniae</i> Infection Is Regulated by IL-1 and the NLRP3/ASC Inflammasome. Journal of Immunology, 2010, 184, 5743-5754.	0.4	143
10	LIPOPOLYSACCHARIDE RECOGNITION, CD14, AND LIPOPOLYSACCHARIDE RECEPTORS. Infectious Disease Clinics of North America, 1999, 13, 341-353.	1.9	134
11	Cellular Activation, Phagocytosis, and Bactericidal Activity Against Group B Streptococcus Involve Parallel Myeloid Differentiation Factor 88-Dependent and Independent Signaling Pathways. Journal of Immunology, 2002, 169, 3970-3977.	0.4	130
12	Localization of TLR2 and MyD88 to Chlamydia trachomatis Inclusions. Journal of Biological Chemistry, 2006, 281, 1652-1659.	1.6	107
13	Innate Immunity at the Mucosal Surface: Role of Toll-Like Receptor 3 and Toll-Like Receptor 9 in Cervical Epithelial Cell Responses to Microbial Pathogens1. Biology of Reproduction, 2006, 74, 824-831.	1.2	96
14	Membrane-Associated Proteins of a Lipopolysaccharide-Deficient Mutant of Neisseria meningitidis Activate the Inflammatory Response through Toll-Like Receptor 2. Infection and Immunity, 2001, 69, 2230-2236.	1.0	95
15	The Lip Lipoprotein from Neisseria gonorrhoeae Stimulates Cytokine Release and NF-κB Activation in Epithelial Cells in a Toll-like Receptor 2-dependent Manner. Journal of Biological Chemistry, 2003, 278, 46252-46260.	1.6	89
16	CD11/CD18 Leukocyte Integrins: New Signaling Receptors for Bacterial Endotoxin. Journal of Surgical Research, 1997, 73, 85-89.	0.8	64
17	Mouse Strain-Dependent Differences in Susceptibility to <i>Neisseria gonorrhoeae</i> Infection and Induction of Innate Immune Responses. Infection and Immunity, 2010, 78, 433-440.	1.0	64
18	CD14 cooperates with complement receptor 3 to mediate MyD88-independent phagocytosis of <i>Borrelia burgdorferi</i> . Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 1228-1232.	3.3	64

ROBIN R INGALLS

#	Article	IF	CITATIONS
19	Complement alone drives efficacy of a chimeric antigonococcal monoclonal antibody. PLoS Biology, 2019, 17, e3000323.	2.6	59
20	Involvement of CD14 and β2-Integrins in Activating Cells with Soluble and Particulate Lipopolysaccharides and Mannuronic Acid Polymers. Infection and Immunity, 2000, 68, 6770-6776.	1.0	45
21	Activation of NOD receptors by Neisseria gonorrhoeae modulates the innate immune response. Innate Immunity, 2014, 20, 377-389.	1.1	33
22	Differential expression of toll-like receptors in the human placenta across early gestation. Placenta, 2016, 46, 1-10.	0.7	32
23	Plasmid-Cured Chlamydia caviae Activates TLR2-Dependent Signaling and Retains Virulence in the Guinea Pig Model of Genital Tract Infection. PLoS ONE, 2012, 7, e30747.	1.1	31
24	Distinct roles for dietary lipids and Porphyromonas gingivalis infection on atherosclerosis progression and the gut microbiota. Anaerobe, 2017, 45, 19-30.	1.0	28
25	The sst1 Resistance Locus Regulates Evasion of Type I Interferon Signaling by Chlamydia pneumoniae as a Disease Tolerance Mechanism. PLoS Pathogens, 2013, 9, e1003569.	2.1	23
26	Enhanced Virulence of Chlamydia muridarum Respiratory Infections in the Absence of TLR2 Activation. PLoS ONE, 2011, 6, e20846.	1.1	21
27	Fibroblast growth factor-inducible 14 (Fn14) is expressed in the lower genital tract and may play a role in amplifying inflammation during infection. Journal of Reproductive Immunology, 2010, 84, 16-23.	0.8	12
28	Killing of diverse eye pathogens (Acanthamoeba spp., Fusarium solani, and Chlamydia trachomatis) with alcohols. PLoS Neglected Tropical Diseases, 2017, 11, e0005382.	1.3	11
29	Distinct gene signatures in aortic tissue from ApoE-/-mice exposed to pathogens or Western diet. BMC Genomics, 2014, 15, 1176.	1.2	9
30	Signaling events in pathogen-induced macrophage foam cell formation. Pathogens and Disease, 2016, 74, ftw074.	0.8	9
31	Specific Inflammatory Stimuli Lead to Distinct Platelet Responses in Mice and Humans. PLoS ONE, 2015, 10, e0131688.	1.1	8
32	Membrane Expression of Soluble Endotoxin-binding Proteins Permits Lipopolysaccharide Signaling in Chinese Hamster Ovary Fibroblasts Independently of CD14. Journal of Biological Chemistry, 1999, 274, 13993-13998.	1.6	6
33	Comparative analysis of the growth and biological activity of a respiratory and atheroma isolate of Chlamydia pneumoniae reveals strain-dependent differences in inflammatory activity and innate immune evasion. BMC Microbiology, 2015, 15, 228.	1.3	1
34	Chlamydia trachomatis Infection, when Treated during Pregnancy, Is Not Associated with Preterm Birth in an Urban Safety-Net Hospital. Infectious Diseases in Obstetrics and Gynecology, 2020, 2020, 1-6.	0.4	1
35	Effects of Endogenous and Exogenous Female Reproductive Hormones on Gene Expression and Barrier Function in Female Genital Epithelia. AIDS Research and Human Retroviruses, 2014, 30, A228-A228.	0.5	0