
Alexander V Lavrov

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8233141/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Detection of small forest fires by lidar. Applied Physics B: Lasers and Optics, 2002, 74, 77-83.	2.2	60
2	Development of neural network committee machines for automatic forest fire detection using lidar. Pattern Recognition, 2004, 37, 2039-2047.	8.1	56
3	Feasibility of forest-fire smoke detection using lidar. International Journal of Wildland Fire, 2003, 12, 159.	2.4	36
4	Evaluation of smoke dispersion from forest fire plumes using lidar experiments and modelling. International Journal of Thermal Sciences, 2006, 45, 848-859.	4.9	36
5	Application of lidar in ultraviolet, visible and infrared ranges for early forest fire detection. Applied Physics B: Lasers and Optics, 2003, 76, 87-95.	2.2	25
6	Estimation of required parameters for detection of small smoke plumes by lidar at 1.54Âμm. Applied Physics B: Lasers and Optics, 2000, 71, 225-229.	2.2	24
7	Calculation of hydrodynamic coefficients of ship sections in roll motion using Navier-Stokes equations. Ocean Engineering, 2017, 133, 36-46.	4.3	23
8	Water stress assessment of cork oak leaves and maritime pine needles based on LIF spectra. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2012, 112, 271-279.	0.6	18
9	Effects of intertidal Âmicrophytobenthos migration on biomass determination via laser-induced Âfluorescence. Marine Ecology - Progress Series, 2011, 432, 45-52.	1.9	17
10	Laser rangefinder architecture as a cost-effective platform for lidar fire surveillance. Optics and Laser Technology, 2009, 41, 862-870.	4.6	13
11	Eye-safe lidar measurements for detection and investigation of forest-fire smoke. International Journal of Wildland Fire, 2004, 13, 401.	2.4	12
12	Optimisation of location and number of lidar apparatuses for early forest fire detection in hilly terrain. Fire Safety Journal, 2006, 41, 144-154.	3.1	12
13	Design of committee machines for classification of single-wavelength lidar signals applied to early forest fire detection. Pattern Recognition Letters, 2005, 26, 625-632.	4.2	11
14	Multi-objective optimisation of lidar parameters for forest-fire detection on the basis of a genetic algorithm. Optics and Laser Technology, 2004, 36, 393-400.	4.6	10
15	Compact low-cost detector for in vivo assessment of microphytobenthos using laser induced fluorescence. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2013, 114, 471-477.	0.6	10
16	Simple eye-safe lidar for cloud height measurement and small forest fire detection. Optics and Spectroscopy (English Translation of Optika I Spektroskopiya), 2010, 109, 144-150.	0.6	9
17	Evaluation of oil spills by laser induced fluorescence spectra. Proceedings of SPIE, 2010, , .	0.8	9
18	Neural Network Based Recognition of Smoke Signatures from Lidar Signals. Neural Processing Letters, 2004, 19, 175-189.	3.2	8

#	Article	IF	CITATIONS
19	Low-cost active optical system for fire surveillance. Optics and Spectroscopy (English Translation of) Tj ETQq1	0.784314	1 rgBT /Overio
20	Comparison of eye-safe UV and IR lidar for small forest-fire detection. , 2002, , .		5
21	Numerical analysis of operating conditions of a continuous-action HF chemical laser. Combustion, Explosion and Shock Waves, 1979, 15, 75-81.	0.8	2
22	Application of rangefinder for small forest fire detection. , 2006, 6359, 259.		2
23	Laminar mixing of planar supersonic chemically reacting jets of unequal pressure. Fluid Dynamics, 1982, 17, 343-347.	0.9	1
24	Mixing of plane laminar relaxing gas jets with radiation taken into account. Fluid Dynamics, 1978, 13, 447-451.	0.9	0
25	Turbulent mixing of relaxing gases in a supersonic nozzle. Fluid Dynamics, 1981, 16, 281-285.	0.9	0
26	Numerical investigation of vibrational relaxation during turbulent mixing of jets in a supersonic nozzle. Journal of Engineering Physics, 1982, 42, 402-407.	0.0	0
27	Question of numerical modeling of stationary mixing of off-design jets with nonequilibrium processes taken into account. Combustion, Explosion and Shock Waves, 1984, 20, 412-418.	0.8	0
28	Vibrationally nonequilibrium flow of a compressible gas in an axisymmetric channel in the presence of glow discharge. Fluid Dynamics, 1986, 20, 929-934.	0.9	0
29	Vibrational relaxation during mixing of undesigned two-dimensional streams. Journal of Applied Mechanics and Technical Physics, 1986, 26, 831-836.	0.5	0
30	Some characteristics of mixing and relaxation in Co2 gas-dynamic laser with selective excitation. Journal of Engineering Physics, 1987, 52, 71-75.	0.0	0
31	Choice of turbulence model for calculating gas dynamic CO2 lasers with selective thermal excitation. Fluid Dynamics, 1991, 25, 788-794.	0.9	0
32	Neural Network Based Recognition of Smoke. Neural Processing Letters, 2004, 20, 137-137.	3.2	0
33	Calculation of the optimal location and minimum number of lidar apparatuses required for early forest fire detection in hilly terrain. , 2004, , .		0
34	Automatic recognition of smoke-plume signatures in lidar signal. , 2008, , .		0
35	Experimental and theoretical investigation of forest fire detection by a portable eye-safe lidar operating at 1540 nm. , 2008, , .		0
36	Active methods of early forest fire detection. , 2010, , .		0