List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232779/publications.pdf Version: 2024-02-01

NEDVA RADAN

#	Article	IF	CITATIONS
1	High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nature Communications, 2016, 7, 11585.	5.8	1,053
2	Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nature Materials, 2017, 16, 363-369.	13.3	921
3	Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nature Energy, 2020, 5, 131-140.	19.8	894
4	Critical review of the molecular design progress in non-fullerene electron acceptors towards commercially viable organic solar cells. Chemical Society Reviews, 2019, 48, 1596-1625.	18.7	814
5	Efficient tandem solar cells with solution-processed perovskite on textured crystalline silicon. Science, 2020, 367, 1135-1140.	6.0	525
6	The role of the third component in ternary organic solar cells. Nature Reviews Materials, 2019, 4, 229-242.	23.3	370
7	Designing ternary blend bulk heterojunction solar cells with reduced carrier recombination and a fill factor of 77%. Nature Energy, 2016, 1, .	19.8	330
8	Intrinsic efficiency limits in low-bandgap non-fullerene acceptor organic solar cells. Nature Materials, 2021, 20, 378-384.	13.3	257
9	Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells. ACS Energy Letters, 2018, 3, 669-676.	8.8	242
10	Quantum Dots Supply Bulk- and Surface-Passivation Agents for Efficient and Stable Perovskite Solar Cells. Joule, 2019, 3, 1963-1976.	11.7	222
11	Performance Enhancement of the P3HT/PCBM Solar Cells through NIR Sensitization Using a Smallâ€Bandgap Polymer. Advanced Energy Materials, 2012, 2, 1198-1202.	10.2	199
12	Burnâ€in Free Nonfullereneâ€Based Organic Solar Cells. Advanced Energy Materials, 2017, 7, 1700770.	10.2	191
13	Overcoming the Interface Losses in Planar Heterojunction Perovskiteâ€Based Solar Cells. Advanced Materials, 2016, 28, 5112-5120.	11.1	188
14	An Efficient, "Burn in―Free Organic Solar Cell Employing a Nonfullerene Electron Acceptor. Advanced Materials, 2017, 29, 1701156.	11.1	175
15	Robust nonfullerene solar cells approaching unity external quantum efficiency enabled by suppression of geminate recombination. Nature Communications, 2018, 9, 2059.	5.8	164
16	Efficient bifacial monolithic perovskite/silicon tandem solar cells via bandgap engineering. Nature Energy, 2021, 6, 167-175.	19.8	164
17	Processable Multipurpose Conjugated Polymer for Electrochromic and Photovoltaic Applications. Chemistry of Materials, 2010, 22, 2978-2987.	3.2	153
18	Benzotriazole containing conjugated polymers for multipurpose organic electronic applications. Polymer Chemistry, 2011, 2, 1029-1043.	1.9	139

#	Article	IF	CITATIONS
19	A fully inkjet-printed disposable glucose sensor on paper. Npj Flexible Electronics, 2018, 2, .	5.1	136
20	Flexible Electronics: Status, Challenges and Opportunities. Frontiers in Electronics, 2020, 1, .	2.0	133
21	Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity. Advanced Science, 2020, 7, 1903389.	5.6	129
22	Exploiting Ternary Blends for Improved Photostability in High-Efficiency Organic Solar Cells. ACS Energy Letters, 2020, 5, 1371-1379.	8.8	126
23	The Physics of Small Molecule Acceptors for Efficient and Stable Bulk Heterojunction Solar Cells. Advanced Energy Materials, 2018, 8, 1703298.	10.2	120
24	Concurrent cationic and anionic perovskite defect passivation enables 27.4% perovskite/silicon tandems with suppression of halide segregation. Joule, 2021, 5, 1566-1586.	11.7	119
25	Environmentally Printing Efficient Organic Tandem Solar Cells with High Fill Factors: A Guideline Towards 20% Power Conversion Efficiency. Advanced Energy Materials, 2014, 4, 1400084.	10.2	116
26	Selfâ€Healing and Stretchable 3Dâ€Printed Organic Thermoelectrics. Advanced Functional Materials, 2019, 29, 1905426.	7.8	115
27	Review—Organic Materials for Thermoelectric Energy Generation. ECS Journal of Solid State Science and Technology, 2017, 6, N3080-N3088.	0.9	112
28	One polymer for all: benzotriazole containing donor–acceptor type polymer as a multi-purpose material. Chemical Communications, 2009, , 6768.	2.2	111
29	Overcoming Coulomb Interaction Improves Free-Charge Generation and Thermoelectric Properties for n-Doped Conjugated Polymers. ACS Energy Letters, 2019, 4, 1556-1564.	8.8	110
30	Nonfullerene Acceptor for Organic Solar Cells with Chlorination on Dithieno[3,2- <i>b</i> :2′,3′- <i>d</i>]pyrrol Fused-Ring. ACS Energy Letters, 2019, 4, 763-770.	8.8	102
31	N-type organic thermoelectrics: demonstration of ZT > 0.3. Nature Communications, 2020, 11, 5694.	5.8	98
32	Towards 15% energy conversion efficiency: a systematic study of the solution-processed organic tandem solar cells based on commercially available materials. Energy and Environmental Science, 2013, 6, 3407.	15.6	96
33	Progress in Poly (3â€Hexylthiophene) Organic Solar Cells and the Influence of Its Molecular Weight on Device Performance. Advanced Energy Materials, 2018, 8, 1801001.	10.2	95
34	Device Performance of Emerging Photovoltaic Materials (Version 1). Advanced Energy Materials, 2021, 11, 2002774.	10.2	93
35	Amphipathic Side Chain of a Conjugated Polymer Optimizes Dopant Location toward Efficient Nâ€Type Organic Thermoelectrics. Advanced Materials, 2021, 33, e2006694.	11.1	91
36	Visible and Nearâ€Infrared Imaging with Nonfullereneâ€Based Photodetectors. Advanced Materials Technologies, 2018, 3, 1800104.	3.0	90

#	Article	IF	CITATIONS
37	Highly Efficient and Reproducible Nonfullerene Solar Cells from Hydrocarbon Solvents. ACS Energy Letters, 2017, 2, 1494-1500.	8.8	89
38	Room-Temperature-Sputtered Nanocrystalline Nickel Oxide as Hole Transport Layer for p–i–n Perovskite Solar Cells. ACS Applied Energy Materials, 2018, 1, 6227-6233.	2.5	88
39	Influence of Blend Morphology and Energetics on Charge Separation and Recombination Dynamics in Organic Solar Cells Incorporating a Nonfullerene Acceptor. Advanced Functional Materials, 2018, 28, 1704389.	7.8	84
40	Dual Sensitizer and Processing-Aid Behavior of Donor Enables Efficient Ternary Organic Solar Cells. Joule, 2019, 3, 846-857.	11.7	84
41	Highly Stretchable and Air-Stable PEDOT:PSS/Ionic Liquid Composites for Efficient Organic Thermoelectrics. Chemistry of Materials, 2019, 31, 3519-3526.	3.2	81
42	Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics. Advanced Materials, 2018, 30, e1801661.	11.1	79
43	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells. Advanced Energy Materials, 2021, 11, 2101662.	10.2	77
44	Polymer:Nonfullerene Bulk Heterojunction Solar Cells with Exceptionally Low Recombination Rates. Advanced Energy Materials, 2017, 7, 1701561.	10.2	76
45	A Highly Crystalline Fusedâ€Ring nâ€Type Small Molecule for Nonâ€Fullerene Acceptor Based Organic Solar Cells and Fieldâ€Effect Transistors. Advanced Functional Materials, 2018, 28, 1802895.	7.8	74
46	The Energy Level Conundrum of Organic Semiconductors in Solar Cells. Advanced Materials, 2022, 34,	11.1	72
47	Giant Humidity Effect on Hybrid Halide Perovskite Microstripes: Reversibility and Sensing Mechanism. ACS Applied Materials & Interfaces, 2019, 11, 29821-29829.	4.0	71
48	Two Similar Near-Infrared (IR) Absorbing Benzannulated Aza-BODIPY Dyes as Near-IR Sensitizers for Ternary Solar Cells. ACS Applied Materials & Interfaces, 2013, 5, 5609-5616.	4.0	70
49	Digital Inkjet Printing of Highâ€Efficiency Largeâ€Area Nonfullerene Organic Solar Cells. Advanced Materials Technologies, 2019, 4, 1900040.	3.0	69
50	Morphology analysis of near IR sensitized polymer/fullerene organic solar cells by implementing low bandgap heteroanalogue C-/Si-PCPDTBT. Journal of Materials Chemistry A, 2014, 2, 19461-19472.	5.2	68
51	Fully Solution-Processing Route toward Highly Transparent Polymer Solar Cells. ACS Applied Materials & Interfaces, 2014, 6, 18251-18257.	4.0	68
52	Tuning of the conformation of asymmetric nonfullerene acceptors for efficient organic solar cells. Journal of Materials Chemistry A, 2019, 7, 22279-22286.	5.2	67
53	Device Performance of Emerging Photovoltaic Materials (Version 2). Advanced Energy Materials, 2021, 11, .	10.2	66
54	Consensus statement: Standardized reporting of power-producing luminescent solar concentrator performance. Joule, 2022, 6, 8-15.	11.7	66

#	Article	IF	CITATIONS
55	Donor–acceptor–donor type conjugated polymers for electrochromic applications: benzimidazole as the acceptor unit. Polymer, 2010, 51, 6123-6131.	1.8	62
56	Donor–acceptor type random copolymers for full visible light absorption. Chemical Communications, 2011, 47, 3933.	2.2	62
57	Photophysics of Molecularâ€Weightâ€Induced Losses in Indacenodithienothiopheneâ€Based Solar Cells. Advanced Functional Materials, 2015, 25, 4898-4907.	7.8	61
58	The Influence of Solvent Additive on Polymer Solar Cells Employing Fullerene and Nonâ€Fullerene Acceptors. Advanced Electronic Materials, 2018, 4, 1700358.	2.6	59
59	A Thieno[2,3- <i>b</i>]pyridine-Flanked Diketopyrrolopyrrole Polymer as an n-Type Polymer Semiconductor for All-Polymer Solar Cells and Organic Field-Effect Transistors. Macromolecules, 2018, 51, 71-79.	2.2	58
60	A solution-processable star-shaped molecule for high-performance organic solar cells via alkyl chain engineering and solvent additive. Organic Electronics, 2013, 14, 219-229.	1.4	57
61	Design of the Solutionâ€Processed Intermediate Layer by Engineering for Inverted Organic Multi junction Solar Cells. Advanced Energy Materials, 2013, 3, 301-307.	10.2	57
62	Molecular Orientation Unified Nonfullerene Acceptor Enabling 14% Efficiency As ast Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1903269.	7.8	56
63	Combination of donor characters in a donor–acceptor–donor (DAD) type polymer containing benzothiadiazole as the acceptor unit. Organic Electronics, 2010, 11, 1877-1885.	1.4	55
64	Spray processable ambipolar benzotriazole bearing electrochromic polymers with multi-colored and transmissive states. Journal of Materials Chemistry, 2011, 21, 1804-1809.	6.7	53
65	All Slotâ€Die Coated Nonâ€Fullerene Organic Solar Cells with PCE 11%. Advanced Functional Materials, 2021, 31, 2009996.	7.8	52
66	Donor acceptor type neutral state green polymer bearing pyrrole as the donor unit. Organic Electronics, 2009, 10, 631-636.	1.4	51
67	Enhancing the Charge Extraction and Stability of Perovskite Solar Cells Using Strontium Titanate (SrTiO ₃) Electron Transport Layer. ACS Applied Energy Materials, 2019, 2, 8090-8097.	2.5	51
68	Processingâ€Performance Evolution of Perovskite Solar Cells: From Large Grain Polycrystalline Films to Single Crystals. Advanced Energy Materials, 2020, 10, 1902762.	10.2	50
69	Fully Inkjetâ€Printed, Ultrathin and Conformable Organic Photovoltaics as Power Source Based on Crossâ€Linked PEDOT:PSS Electrodes. Advanced Materials Technologies, 2020, 5, 2000226.	3.0	50
70	Electrochromic and optical studies of solution processable benzotriazole and fluorene containing copolymers. Organic Electronics, 2011, 12, 202-209.	1.4	49
71	Transition from Positive to Negative Photoconductance in Doped Hybrid Perovskite Semiconductors. Advanced Optical Materials, 2019, 7, 1900865.	3.6	47
72	A Highly Conductive Titanium Oxynitride Electronâ€Selective Contact for Efficient Photovoltaic Devices. Advanced Materials, 2020, 32, e2002608.	11.1	46

#	Article	IF	CITATIONS
73	Electrochemical and optical studies of furan and thieno[3,2â€ <i>b</i>]thiophene end capped benzotriazole derivatives. Journal of Polymer Science Part A, 2010, 48, 5603-5610.	2.5	45
74	An Efficient Solutionâ€Processed Intermediate Layer for Facilitating Fabrication of Organic Multiâ€Junction Solar Cells. Advanced Energy Materials, 2013, 3, 1597-1605.	10.2	45
75	Suppressing Coâ€Crystallization of Halogenated Nonâ€Fullerene Acceptors for Thermally Stable Ternary Solar Cells. Advanced Functional Materials, 2020, 30, 2005462.	7.8	44
76	Efficient DPP Donor and Nonfullerene Acceptor Organic Solar Cells with High Photonâ€ŧo urrent Ratio and Low Energetic Loss. Advanced Functional Materials, 2019, 29, 1902441.	7.8	43
77	Processable donor–acceptor type electrochromes switching between multicolored and highly transmissive states towards single component RCB-based display devices. Journal of Materials Chemistry, 2010, 20, 9861.	6.7	41
78	End Group Tuning in Acceptor–Donor–Acceptor Nonfullerene Small Molecules for High Fill Factor Organic Solar Cells. Advanced Functional Materials, 2019, 29, 1808429.	7.8	41
79	A universal solution processed interfacial bilayer enabling ohmic contact in organic and hybrid optoelectronic devices. Energy and Environmental Science, 2020, 13, 268-276.	15.6	40
80	Understanding the Charge Transfer State and Energy Loss Trade-offs in Non-fullerene-Based Organic Solar Cells. ACS Energy Letters, 2021, 6, 3408-3416.	8.8	40
81	Effects of oligothiophene ï€-bridge length on physical and photovoltaic properties of star-shaped molecules for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2014, 2, 16135-16147.	5.2	38
82	Chemical Design Rules for Nonâ€Fullerene Acceptors in Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2102363.	10.2	38
83	Role of Compositional Tuning on Thermoelectric Parameters of Hybrid Halide Perovskites. Journal of Physical Chemistry C, 2019, 123, 14928-14933.	1.5	37
84	Figures of Merit Guiding Research on Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 5829-5843.	1.5	34
85	Neutralâ€State Green Conjugated Polymers from Pyrrole Bisâ€Substituted Benzothiadiazole and Benzoselenadiazole for Electrochromic Devices. Macromolecular Chemistry and Physics, 2011, 212, 799-805.	1.1	32
86	A 0D Leadâ€Free Hybrid Crystal with Ultralow Thermal Conductivity. Advanced Functional Materials, 2019, 29, 1809166.	7.8	32
87	Cs _{0.15} FA _{0.85} PbI ₃ perovskite solar cells for concentrator photovoltaic applications. Journal of Materials Chemistry A, 2018, 6, 21913-21917.	5.2	31
88	Electronâ€Deficient and Quinoid Central Unit Engineering for Unfused Ringâ€Based A ₁ –D–A ₂ –D–A ₁ â€Type Acceptor Enables High Performance Nonfullerene Polymer Solar Cells with High <i>V</i> _{oc} and PCE Simultaneously. Small, 2020, 16, e1907681.	5.2	31
89	Photovoltaic and photophysical properties of a novel bis-3-hexylthiophene substituted quinoxaline derivative. Solar Energy Materials and Solar Cells, 2008, 92, 1162-1169.	3.0	30
90	Electrochromic device and bulk heterojunction solar cell applications of poly 4,7-bis(2,3-dihydrothieno[3,4-b][1,4]dioxin-5-yl)-2-dodecyl-2H-benzo[1,2,3]triazole (PBEBT). Solar Energy Materials and Solar Cells, 2010, 94, 1797-1802.	3.0	30

#	Article	IF	CITATIONS
91	All-Solution-Processed Quantum Dot Electrical Double-Layer Transistors Enhanced by Surface Charges of Ti ₃ C ₂ T _{<i>x</i>} MXene Contacts. ACS Nano, 2021, 15, 5221-5229.	7.3	30
92	Barbiturate end-capped non-fullerene acceptors for organic solar cells: tuning acceptor energetics to suppress geminate recombination losses. Chemical Communications, 2018, 54, 2966-2969.	2.2	29
93	Qualitative Analysis of Bulk-Heterojunction Solar Cells without Device Fabrication: An Elegant and Contactless Method. Journal of the American Chemical Society, 2014, 136, 10949-10955.	6.6	28
94	A Nonionic Alcohol Soluble Polymer Cathode Interlayer Enables Efficient Organic and Perovskite Solar Cells. Chemistry of Materials, 2021, 33, 8602-8611.	3.2	28
95	Adjusting the energy of interfacial states in organic photovoltaics for maximum efficiency. Nature Communications, 2021, 12, 1772.	5.8	27
96	Ink Engineering of Transport Layers for 9.5% Efficient Allâ€Printed Semitransparent Nonfullerene Solar Cells. Advanced Functional Materials, 2021, 31, 2005763.	7.8	26
97	Benzyl substituted benzotriazole containing conjugated polymers: Effect of position of the substituent on electrochromic properties. Synthetic Metals, 2010, 160, 2534-2539.	2.1	25
98	Green to highly transmissive switching multicolored electrochromes: Ferrocene pendant group effect on electrochromic properties. Reactive and Functional Polymers, 2011, 71, 168-174.	2.0	25
99	Nanoscale Morphology of PTB7 Based Organic Photovoltaics as a Function of Fullerene Size. Scientific Reports, 2016, 6, 30915.	1.6	25
100	Interfacial Dynamics and Contact Passivation in Perovskite Solar Cells. Advanced Electronic Materials, 2019, 5, 1800500.	2.6	25
101	Mechanical Reliability of Fullerene/Tin Oxide Interfaces in Monolithic Perovskite/Silicon Tandem Cells. ACS Energy Letters, 2022, 7, 827-833.	8.8	25
102	Synthesis of new donor–acceptor polymers containing thiadiazoloquinoxaline and pyrazinoquinoxaline moieties: low-band gap, high optical contrast, and almost black colored materials. Tetrahedron Letters, 2011, 52, 2725-2729.	0.7	24
103	Nanoscale Morphology of Doctor Bladed versus Spin oated Organic Photovoltaic Films. Advanced Energy Materials, 2017, 7, 1701269.	10.2	24
104	Side chain engineering on dithieno[3,2- <i>b</i> :2,3- <i>d</i>]pyrrol fused electron acceptors for efficient organic solar cells. Materials Chemistry Frontiers, 2019, 3, 702-708.	3.2	24
105	Role of Dopants in Organic and Halide Perovskite Energy Conversion Devices. Chemistry of Materials, 2021, 33, 8147-8172.	3.2	23
106	Role of Polymer Fractionation in Energetic Losses and Charge Carrier Lifetimes of Polymer: Fullerene Solar Cells. Journal of Physical Chemistry C, 2015, 119, 19668-19673.	1.5	22
107	A new NIR absorbing DPP-based polymer for thick organic solar cells. Journal of Materials Chemistry C, 2018, 6, 2957-2961.	2.7	22
108	Fluorination Triggered New Small Molecule Donor Materials for Efficient As ast Organic Solar Cells. Small, 2018, 14, e1801542.	5.2	22

#	Article	IF	CITATIONS
109	Multichromic polymers of benzotriazole derivatives: Effect of benzyl substitution. Electrochimica Acta, 2011, 56, 2263-2268.	2.6	21
110	Tuning the Thermoelectric Performance of Hybrid Tin Perovskites by Air Treatment. Advanced Energy and Sustainability Research, 2020, 1, 2000033.	2.8	20
111	A ferrocene functionalized multichromic p and n dopable donor–acceptor–donor type conjugated polymer. Journal of Electroanalytical Chemistry, 2010, 648, 184-189.	1.9	19
112	Electrochemical and optical properties of solution processable benzotriazole and benzothiadiazole containing copolymers. Synthetic Metals, 2012, 162, 79-84.	2.1	19
113	Lowâ€Temperatureâ€Processed Colloidal Quantum Dots as Building Blocks for Thermoelectrics. Advanced Energy Materials, 2019, 9, 1803049.	10.2	19
114	Enhanced Thermoelectric Performance and Lifetime in Acid-Doped PEDOT:PSS Films Via Work Function Modification. ACS Applied Energy Materials, 2020, 3, 9126-9132.	2.5	19
115	Enhancing electrochromic and kinetic properties of poly(2,3-bis(4-tert-butylphenyl)-5,8-di(1H-pyrrol-2-yl) quinoxaline) by copolymerization. Electrochimica Acta, 2010, 55, 2373-2376.	2.6	18
116	A Universal Cosolvent Evaporation Strategy Enables Direct Printing of Perovskite Single Crystals for Optoelectronic Device Applications. Advanced Materials, 2022, 34, e2109862.	11.1	18
117	Spectroelectrochemical and Photovoltaic Characterization of a Solutionâ€Processable nâ€andâ€p Type Dopable Pyrroleâ€Bearing Conjugated Polymer. Macromolecular Chemistry and Physics, 2010, 211, 2602-2610.	1.1	17
118	Syntheses and optoelectronic properties of quinoxaline polymers: The effect of donor unit. Journal of Polymer Science Part A, 2011, 49, 4065-4070.	2.5	17
119	Facile synthesis and photovoltaic applications of a new alkylated bismethano fullerene as electron acceptor for high open circuit voltage solar cells. RSC Advances, 2015, 5, 64724-64730.	1.7	17
120	A Multilayered Electron Extracting System for Efficient Perovskite Solar Cells. Advanced Functional Materials, 2020, 30, 2004273.	7.8	17
121	N-Doping improves charge transport and morphology in the organic non-fullerene acceptor O-IDTBR. Journal of Materials Chemistry C, 2021, 9, 4486-4495.	2.7	17
122	Photovoltaic limitations of BODIPY:fullerene based bulk heterojunction solar cells. Synthetic Metals, 2017, 226, 25-30.	2.1	14
123	Reduced ion migration and enhanced photoresponse in cuboid crystals of methylammonium lead iodide perovskite. Journal Physics D: Applied Physics, 2019, 52, 054001.	1.3	14
124	Photovoltaic properties of benzotriazole containing alternating donor–acceptor copolymers: Effect of alkyl chain length. Synthetic Metals, 2012, 162, 2047-2051.	2.1	12
125	Highly Passivated nâ€Type Colloidal Quantum Dots for Solutionâ€Processed Thermoelectric Generators with Large Output Voltage. Advanced Energy Materials, 2019, 9, 1901244.	10.2	12
126	Molecular Doping Directed by a Neutral Radical. ACS Applied Materials & Interfaces, 2021, 13, 29858-29865.	4.0	12

#	ARTICLE	IF	CITATIONS
127	Synthesis and photovoltaic effect in red/near-infrared absorbing A-D-A-D-A-type oligothiophenes containing benzothiadiazole and thienothiadiazole central units. Journal of Photonics for Energy, 2015, 5, 057213.	0.8	11
128	A Highly Conductive Conjugated Polyelectrolyte for Flexible Organic Thermoelectrics. ACS Applied Energy Materials, 2020, 3, 8667-8675.	2.5	11
129	Air-Processable and Thermally Stable Hole Transport Layer for Non-Fullerene Organic Solar Cells. ACS Applied Energy Materials, 2022, 5, 1023-1030.	2.5	11
130	A green neutral state donor–acceptor copolymer for organic solar cells. Polymer Chemistry, 2010, 1, 1245.	1.9	10
131	Introducing a new triazoloquinoxalineâ€based fluorene copolymer for organic photovoltaics: Synthesis, characterization, and photovoltaic properties. Journal of Polymer Science Part A, 2013, 51, 987-992.	2.5	10
132	Efficient as-cast thick film small-molecule organic solar cell with less fluorination on the donor. Materials Chemistry Frontiers, 2020, 4, 206-212.	3.2	9
133	Molecular Doping of a Naphthalene Diimide–Bithiophene Copolymer and SWCNTs for n-Type Thermoelectric Composites. ACS Applied Materials & Interfaces, 2021, 13, 411-418.	4.0	9
134	Backbone-driven host–dopant miscibility modulates molecular doping in NDI conjugated polymers. Materials Horizons, 2022, 9, 500-508.	6.4	8
135	Excitation Wavelength-Dependent Internal Quantum Efficiencies in a P3HT/Nonfullerene Acceptor Solar Cell. Journal of Physical Chemistry C, 2019, 123, 5826-5832.	1.5	6
136	High performance conjugated terpolymers as electron donors in nonfullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 13422-13429.	2.7	6
137	In Situ Spectroelectrochemical Study of Positively and Negatively Charged States in a Donor/Acceptor EDOT/Benzotriazoleâ€Based Polymer. Macromolecular Chemistry and Physics, 2011, 212, 2459-2466.	1.1	5
138	Efficient Hybrid Amorphous Silicon/Organic Tandem Solar Cells Enabled by Nearâ€Infrared Absorbing Nonfullerene Acceptors. Advanced Energy Materials, 2021, 11, 2100166.	10.2	5
139	The ultralow thermal conductivity and tunable thermoelectric properties of surfactant-free SnSe nanocrystals. RSC Advances, 2021, 11, 28072-28080.	1.7	4
140	Solar Cells: Overcoming the Ambient Manufacturabilityâ€Scalabilityâ€Performance Bottleneck in Colloidal Quantum Dot Photovoltaics (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870260.	11.1	3
141	Dopant-Assisted Matrix Stabilization Enables Thermoelectric Performance Enhancement in n-Type Quantum Dot Films. ACS Applied Materials & Interfaces, 2021, 13, 18999-19007.	4.0	3
142	Halide Perovskites: Halide Perovskites: Thermal Transport and Prospects for Thermoelectricity (Adv.) Tj ETQqO 0 () rgBT /Ov	erlock 10 Tf
143	Linked Nickel Oxide/Perovskite Interface Passivation for Highâ€Performance Textured Monolithic Tandem Solar Cells (Adv. Energy Mater. 40/2021). Advanced Energy Materials, 2021, 11, 2170160.	10.2	2

#	Article	IF	CITATIONS
145	Effects of Vertical Molecular Stratifications and Microstructures on the Properties of Fullereneâ€Free Organic Solar Cells. Advanced Photonics Research, 0, , 2100339.	1.7	2
146	Effect of Quencher, Geometry, and Light Outcoupling on the Determination of Exciton Diffusion Length in Nonfullerene Acceptors. Solar Rrl, 2022, 6, .	3.1	2
147	Themed issue on electronic properties and characterisation of perovskites. Journal of Materials Chemistry C, 2019, 7, 5224-5225.	2.7	1
148	Flexible organic tandem solar modules: a story of up-scaling. , 2014, , .		0
149	Ultrafast Energy Transfer Triggers Ionization Energy Offset Dependence of Quantum Efficiency in Low-bandgap Non-fullerene Acceptor Solar Cells. , 0, , .		0
150	Photoactive Layer Design Rules for Efficient and Stable Nonfullerene Solar Cells. , 0, , .		0
151	Build your village. Nature Energy, 2021, 6, 938-938.	19.8	0
152	Strategies for high current densities in non-fullerene acceptors based organic solar cells. , 2018, , .		0
153	High Speed Coating Method for Fabricating Organic Solar Cells with PCE>10%. , 0, , .		0
154	An Energetic Perspective to Improve the Photostability of Non-Fullerene Acceptor based Organic PhotoVoltaics. , 0, , .		0
155	Role of Energy Transfer and Ionization Energy Offset in NFA-based Ternary Organic Solar Cells: Implications to Design Rules. , 0, , .		0
156	Carrier Density Tuning in Tin-Lead Perovskites via N-type Molecular Doping. , 0, , .		0
157	CHAPTER 3. High-performance Organic Photovoltaic Donor Polymers. RSC Nanoscience and Nanotechnology, 0, , 69-108.	0.2	0