
Andor Pivarcsi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232443/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	IL-31: A new link between T cells and pruritus in atopic skin inflammation. Journal of Allergy and Clinical Immunology, 2006, 117, 411-417.	1.5	843
2	MicroRNAs: Novel Regulators Involved in the Pathogenesis of Psoriasis?. PLoS ONE, 2007, 2, e610.	1.1	642
3	MicroRNAs and immunity: Novel players in the regulation of normal immune function and inflammation. Seminars in Cancer Biology, 2008, 18, 131-140.	4.3	478
4	Propionibacterium acnes and lipopolysaccharide induce the expression of antimicrobial peptides and proinflammatory cytokines/chemokines in human sebocytes. Microbes and Infection, 2006, 8, 2195-2205.	1.0	321
5	Distinct Strains of Propionibacterium acnes Induce Selective Human β-Defensin-2 and Interleukin-8 Expression in Human Keratinocytes Through Toll-Like Receptors. Journal of Investigative Dermatology, 2005, 124, 931-938.	0.3	301
6	Expression and function of Toll-like receptors 2 and 4 in human keratinocytes. International Immunology, 2003, 15, 721-730.	1.8	295
7	MiR-155 is overexpressed in patients with atopic dermatitis and modulates T-cell proliferative responses by targeting cytotoxic T lymphocyte–associated antigen 4. Journal of Allergy and Clinical Immunology, 2010, 126, 581-589.e20.	1.5	261
8	microRNAs in Inflammation. International Reviews of Immunology, 2009, 28, 535-561.	1.5	209
9	CCL1-CCR8 Interactions: An Axis Mediating the Recruitment of T Cells and Langerhans-Type Dendritic Cells to Sites of Atopic Skin Inflammation. Journal of Immunology, 2005, 174, 5082-5091.	0.4	194
10	MiR-125b, a MicroRNA Downregulated in Psoriasis, Modulates Keratinocyte Proliferation by Targeting FGFR2. Journal of Investigative Dermatology, 2011, 131, 1521-1529.	0.3	186
11	Identification and Characterization of a Novel, Psoriasis Susceptibility-related Noncoding RNA gene, PRINS. Journal of Biological Chemistry, 2005, 280, 24159-24167.	1.6	179
12	MicroRNAs: novel regulators in skin inflammation. Clinical and Experimental Dermatology, 2008, 33, 312-315.	0.6	177
13	MicroRNA-31 Is Overexpressed in Psoriasis and Modulates Inflammatory Cytokine and Chemokine Production in Keratinocytes via Targeting Serine/Threonine Kinase 40. Journal of Immunology, 2013, 190, 678-688.	0.4	168
14	MicroRNA-132 enhances transition from inflammation to proliferation during wound healing. Journal of Clinical Investigation, 2015, 125, 3008-3026.	3.9	165
15	MicroRNA-125b Down-regulates Matrix Metallopeptidase 13 and Inhibits Cutaneous Squamous Cell Carcinoma Cell Proliferation, Migration, and Invasion. Journal of Biological Chemistry, 2012, 287, 29899-29908.	1.6	161
16	Advances in microRNAs: implications for immunity and inflammatory diseases. Journal of Cellular and Molecular Medicine, 2009, 13, 24-38.	1.6	150
17	Hemese, a hemocyte-specific transmembrane protein, affects the cellular immune response in Drosophila. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 2622-2627.	3.3	148
18	MiRâ€⊋1 is upâ€regulated in psoriasis and suppresses T cell apoptosis. Experimental Dermatology, 2012, 21, 312-314.	1.4	139

#	Article	IF	CITATIONS
19	Microbial compounds induce the expression of pro-inflammatory cytokines, chemokines and human β-defensin-2 in vaginal epithelial cells. Microbes and Infection, 2005, 7, 1117-1127.	1.0	135
20	MicroRNA-31 Promotes Skin Wound Healing by Enhancing Keratinocyte Proliferation and Migration. Journal of Investigative Dermatology, 2015, 135, 1676-1685.	0.3	127
21	The Role of Innate Immunity in the Pathogenesis of Acne. Dermatology, 2003, 206, 96-105.	0.9	126
22	Tumor immune escape by the loss of homeostatic chemokine expression. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 19055-19060.	3.3	125
23	MYCN-regulated microRNAs repress estrogen receptor-α (<i>ESR1</i>) expression and neuronal differentiation in human neuroblastoma. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1553-1558.	3.3	125
24	CC Chemokine Ligand 18, An Atopic Dermatitis-Associated and Dendritic Cell-Derived Chemokine, Is Regulated by Staphylococcal Products and Allergen Exposure. Journal of Immunology, 2004, 173, 5810-5817.	0.4	115
25	Protein Kinase C-Dependent Upregulation of miR-203 Induces the Differentiation of Human Keratinocytes. Journal of Investigative Dermatology, 2010, 130, 124-134.	0.3	115
26	MicroRNA-146a suppresses IL-17–mediated skin inflammation and is genetically associated with psoriasis. Journal of Allergy and Clinical Immunology, 2017, 139, 550-561.	1.5	107
27	MiR-146a Negatively Regulates TLR2-Induced Inflammatory Responses in Keratinocytes. Journal of Investigative Dermatology, 2014, 134, 1931-1940.	0.3	96
28	MicroRNA-203 functions as a tumor suppressor in basal cell carcinoma. Oncogenesis, 2012, 1, e3-e3.	2.1	87
29	A Mannose-Binding Receptor is Expressed on Human Keratinocytes and Mediates Killing of Candida albicans. Journal of Investigative Dermatology, 2001, 117, 205-213.	0.3	84
30	Changes in the level of serum microRNAs in patients with psoriasis after antitumour necrosis factor-α therapy. British Journal of Dermatology, 2013, 169, 563-570.	1.4	80
31	The Human Antimicrobial Peptide LL-37 Suppresses Apoptosis in Keratinocytes. Journal of Investigative Dermatology, 2009, 129, 937-944.	0.3	77
32	Human antimicrobial protein hCAP18/LL-37 promotes a metastatic phenotype in breast cancer. Breast Cancer Research, 2009, 11, R6.	2.2	77
33	RNA editing of the GLI1 transcription factor modulates the output of Hedgehog signaling. RNA Biology, 2013, 10, 321-333.	1.5	73
34	Chemokine networks in atopic dermatitis: traffic signals of disease. Current Allergy and Asthma Reports, 2005, 5, 284-290.	2.4	68
35	MicroRNA-132 with Therapeutic Potential in Chronic Wounds. Journal of Investigative Dermatology, 2017, 137, 2630-2638.	0.3	68
36	Innate Immune Functions of the Keratinocytes. Acta Microbiologica Et Immunologica Hungarica, 2004, 51, 303-310.	0.4	66

#	Article	IF	CITATIONS
37	Innate Immunity in the Skin: How Keratinocytes Fight Against Pathogens. Current Immunology Reviews, 2005, 1, 29-42.	1.2	66
38	miR-193b/365a cluster controls progression of epidermal squamous cell carcinoma. Carcinogenesis, 2014, 35, 1110-1120.	1.3	66
39	Histidine Decarboxylase Expression in Human Melanoma. Journal of Investigative Dermatology, 2000, 115, 345-352.	0.3	61
40	A comprehensive analysis of coding and non-coding transcriptomic changes in cutaneous squamous cell carcinoma. Scientific Reports, 2020, 10, 3637.	1.6	60
41	The expression of microRNAâ€203 during human skin morphogenesis. Experimental Dermatology, 2010, 19, 854-856.	1.4	57
42	MicroRNA-31 Is Overexpressed in Cutaneous Squamous Cell Carcinoma and Regulates Cell Motility and Colony Formation Ability of Tumor Cells. PLoS ONE, 2014, 9, e103206.	1.1	57
43	A novel mechanism for antiâ€EGFR antibody action involves chemokineâ€mediated leukocyte infiltration. International Journal of Cancer, 2009, 124, 2589-2596.	2.3	54
44	MicroRNAs in inflammation and response to injuries induced by environmental pollution. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 2011, 717, 46-53.	0.4	54
45	The Keratinocyte Transcriptome in Psoriasis: Pathways Related to Immune Responses, Cell Cycle and Keratinization. Acta Dermato-Venereologica, 2019, 99, 196-205.	0.6	52
46	miR-19a/b and miR-20a Promote Wound Healing by Regulating the Inflammatory Response of Keratinocytes. Journal of Investigative Dermatology, 2021, 141, 659-671.	0.3	46
47	Dithranol upregulates IL-10 receptors on the cultured human keratinocyte cell line HaCaT. Inflammation Research, 2001, 50, 44-49.	1.6	44
48	Differentiation-regulated expression of Toll-like receptors 2 and 4 in HaCaT keratinocytes. Archives of Dermatological Research, 2004, 296, 120-124.	1.1	44
49	Next-Generation Sequencing Identifies MicroRNAs that Associate with Pathogenic Autoimmune Neuroinflammation in Rats. Journal of Immunology, 2013, 190, 4066-4075.	0.4	44
50	Proliferating Keratinocytes Are Putative Sources of the Psoriasis Susceptibility-Related EDA+(Extra) Tj ETQq0 0 C 537-546.) rgBT /Ovo 0.3	erlock 10 Tf 50 42
51	Circulating micro <scp>RNA</scp> s in extracellular vesicles as potential biomarkers for psoriatic arthritis in patients with psoriasis. Journal of the European Academy of Dermatology and Venereology, 2020, 34, 1248-1256.	1.3	42
52	MicroRNA-203 Inversely Correlates with Differentiation Grade, Targets c-MYC, and Functions as a Tumor Suppressor in cSCC. Journal of Investigative Dermatology, 2016, 136, 2485-2494.	0.3	39
53	Serum factors regulate the expression of the proliferation-related genes α5 integrin and keratin 1, but not keratin 10, in HaCaT keratinocytes. Archives of Dermatological Research, 2001, 293, 206-213.	1.1	36
54	MicroRNA-132 promotes fibroblast migration via regulating RAS p21 protein activator 1 in skin wound healing. Scientific Reports, 2017, 7, 7797.	1.6	36

#	Article	IF	CITATIONS
55	Extracellular microvesicle microRNAs as predictive biomarkers for targeted therapy in metastastic cutaneous malignant melanoma. PLoS ONE, 2018, 13, e0206942.	1.1	35
56	Genome-Wide Screen for MicroRNAs Reveals a Role for miR-203 in Melanoma Metastasis. Journal of Investigative Dermatology, 2018, 138, 882-892.	0.3	34
57	Identification of novel nonâ€coding RNAâ€based negative feedback regulating the expression of the oncogenic transcription factor CLI1. Molecular Oncology, 2014, 8, 912-926.	2.1	33
58	Genetic polymorphisms altering micro <scp>RNA</scp> activity in psoriasis – a key to solve the puzzle of missing heritability?. Experimental Dermatology, 2014, 23, 620-624.	1.4	31
59	Cross-talk between IFN-Î ³ and TWEAK through miR-149 amplifies skin inflammation in psoriasis. Journal of Allergy and Clinical Immunology, 2021, 147, 2225-2235.	1.5	29
60	Activation of Tollâ€like receptors alters the micro <scp>RNA</scp> expression profile of keratinocytes. Experimental Dermatology, 2014, 23, 281-283.	1.4	25
61	Differential Expression of D-Type Cyclins in HaCaT Keratinocytes and in Psoriasis. Journal of Investigative Dermatology, 2008, 128, 634-642.	0.3	23
62	Characterization of EGFR and ErbB2 expression in atopic dermatitis patients. Archives of Dermatological Research, 2012, 304, 773-780.	1.1	21
63	Next-Generation Sequencing Identifies the Keratinocyte-Specific miRNA Signature of Psoriasis. Journal of Investigative Dermatology, 2019, 139, 2547-2550.e12.	0.3	21
64	Budesonide, but not tacrolimus, affects the immune functions of normal human keratinocytes. International Immunopharmacology, 2006, 6, 358-368.	1.7	19
65	EGFR/Ras-induced CCL20 production modulates the tumour microenvironment. British Journal of Cancer, 2020, 123, 942-954.	2.9	18
66	Chromatin interactions in differentiating keratinocytes reveal novel atopic dermatitis– and psoriasis-associated genes. Journal of Allergy and Clinical Immunology, 2021, 147, 1742-1752.	1.5	18
67	Human adult epidermal melanocytes cultured without chemical mitogens express the EGF receptor and respond to EGF. Archives of Dermatological Research, 2007, 299, 191-200.	1.1	17
68	Interleukin-8 is regulated by miR-203 at the posttranscriptional level in primary human keratinocytes. European Journal of Dermatology, 2013, , .	0.3	17
69	Negative regulatory effect of histamine in DNFB-induced contact hypersensitivity. International Immunology, 2004, 16, 1781-1788.	1.8	16
70	Identification of chronological and photoageing-associated microRNAs in human skin. Scientific Reports, 2018, 8, 12990.	1.6	15
71	Constraints for monocyteâ€derived dendritic cell functions under inflammatory conditions. European Journal of Immunology, 2012, 42, 458-469.	1.6	14
72	MiR-130a Acts as a Tumor Suppressor MicroRNA in Cutaneous Squamous Cell Carcinoma and Regulates the Activity of the BMP/SMAD Pathway by Suppressing ACVR1. Journal of Investigative Dermatology, 2021, 141, 1922-1931.	0.3	13

#	Article	IF	CITATIONS
73	The expression of keratinocyte growth factor receptor (FGFR2-IIIb) correlates with the high proliferative rate of HaCaT keratinocytes. Experimental Dermatology, 2006, 15, 596-605.	1.4	12
74	<scp>miR</scp> â€378a regulates keratinocyte responsiveness to <scp>interleukinâ€17A</scp> in psoriasis*. British Journal of Dermatology, 2022, 187, 211-222.	1.4	12
75	Tofacitinib Represses the Janus Kinase-Signal Transducer and Activators of Transcription Signalling Pathway in Keratinocytes. Acta Dermato-Venereologica, 2018, 98, 772-775.	0.6	11
76	Toll-Like Receptor 9-Independent Suppression of Skin Inflammation by Oligonucleotides. Journal of Investigative Dermatology, 2007, 127, 746-748.	0.3	7
77	Are BIC (miR-155) Polymorphisms Associated with Eczema Susceptibility?. Acta Dermato-Venereologica, 2013, 93, 366-367.	0.6	7
78	Abstract 1098: MiR-203 suppresses cutaneous squamous cell carcinoma growth and targets the myc oncogene. , 2016, , .		1
79	A MANNOSE-BINDING RECEPTOR IS EXPRESSED ON HUMAN KERATINOCYTES AND MEDIATES KILLING OF CANDIDA ALBICANS. Mycoses, 2002, 45, 30-31.	1.8	0
80	Chemokines Regulate Leukocyte Trafficking and Organ-specific Metastasis. , 2006, , 153-166.		0
81	371 Investigation of the effect of tofacitinib on keratinocytes. Journal of Investigative Dermatology, 2016, 136, S224.	0.3	0
82	562 MicroRNA-132, a promising target for wound therapy. Journal of Investigative Dermatology, 2016, 136, S256.	0.3	0
83	550 MicroRNA-17-92 promotes wound healing by regulating inflammatory response in keratinocytes. Journal of Investigative Dermatology, 2016, 136, S254.	0.3	0
84	384 MicroRNA-146a suppresses IL-17-mediated skin inflammation and is genetically associated with psoriasis. Journal of Investigative Dermatology, 2016, 136, S226.	0.3	0
85	Exosomal microRNAs as putative predictive biomarkers for targeted therapy in stage IV cutaneous malignant melanoma (CMM) Journal of Clinical Oncology, 2016, 34, 9579-9579.	0.8	0