
Pilar Aranda Gallego

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232415/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Bionanocomposites: A New Concept of Ecological, Bioinspired, and Functional Hybrid Materials. Advanced Materials, 2007, 19, 1309-1319.	11.1	593
2	Poly(ethylene oxide)-silicate intercalation materials. Chemistry of Materials, 1992, 4, 1395-1403.	3.2	525
3	Hybrid materials based on clays for environmental and biomedical applications. Journal of Materials Chemistry, 2010, 20, 9306.	6.7	296
4	Advances in Biomimetic and Nanostructured Biohybrid Materials. Advanced Materials, 2010, 22, 323-336.	11.1	275
5	Bio-Nanocomposites Based on Layered Double Hydroxides. Chemistry of Materials, 2005, 17, 1969-1977.	3.2	261
6	Bionanocomposites based on alginate–zein/layered double hydroxide materials as drug delivery systems. Journal of Materials Chemistry, 2010, 20, 9495.	6.7	233
7	Functional biopolymer nanocomposites based on layered solids. Journal of Materials Chemistry, 2005, 15, 3650.	6.7	218
8	Polymer-salt intercalation complexes in layer silicates. Advanced Materials, 1990, 2, 545-547.	11.1	213
9	Fibrous clays based bionanocomposites. Progress in Polymer Science, 2013, 38, 1392-1414.	11.8	209
10	Hybrid and biohybrid silicate based materials: molecular vs. block-assembling bottom–up processes. Chemical Society Reviews, 2011, 40, 801-828.	18.7	199
11	Microfibrous Chitosanâ^'Sepiolite Nanocomposites. Chemistry of Materials, 2006, 18, 1602-1610.	3.2	196
12	Pectin-coated chitosan–LDH bionanocomposite beads as potential systems for colon-targeted drug delivery. International Journal of Pharmaceutics, 2014, 463, 1-9.	2.6	193
13	Titaniaâ^'Sepiolite Nanocomposites Prepared by a Surfactant Templating Colloidal Route. Chemistry of Materials, 2008, 20, 84-91.	3.2	150
14	Supported Graphene from Natural Resources: Easy Preparation and Applications. Advanced Materials, 2011, 23, 5250-5255.	11.1	149
15	Nanocomposite materials with controlled ion mobilityk. Advanced Materials, 1995, 7, 180-184.	11.1	130
16	Nanotechnology Responses to COVIDâ€19. Advanced Healthcare Materials, 2020, 9, e2000979.	3.9	128
17	Poly(ethylene oxide)/NH4+-smectite nanocomposites. Applied Clay Science, 1999, 15, 119-135.	2.6	110
18	Polysaccharide–fibrous clay bionanocomposites. Applied Clay Science, 2014, 96, 2-8.	2.6	100

#	Article	IF	CITATIONS
19	New titania-clay nanostructured porous materials. Microporous and Mesoporous Materials, 2010, 131, 252-260.	2.2	94
20	Bio-organoclays Based on Phospholipids as Immobilization Hosts for Biological Species. Langmuir, 2010, 26, 5217-5225.	1.6	89
21	Electrical characterization of poly(ethylene oxide)-clay nanocomposites prepared by microwave irradiation. Journal of Polymer Science, Part B: Polymer Physics, 2003, 41, 3249-3263.	2.4	86
22	Relevance of polymer– and biopolymer–clay nanocomposites in electrochemical and electroanalytical applications. Thin Solid Films, 2006, 495, 104-112.	0.8	78
23	ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Applied Clay Science, 2018, 156, 104-109.	2.6	76
24	Clayâ€Graphene Nanoplatelets Functional Conducting Composites. Advanced Functional Materials, 2016, 26, 7394-7405.	7.8	70
25	Bionanocomposites as New Carriers for Influenza Vaccines. Advanced Materials, 2009, 21, 4167-4171.	11.1	69
26	Clay-supported graphene materials: application to hydrogen storage. Physical Chemistry Chemical Physics, 2013, 15, 18635.	1.3	69
27	New polyelectrolyte materials based on smectite polyoxyethylene intercalation compounds. Acta Polymerica, 1994, 45, 59-67.	1.4	68
28	Fe-containing pillared clays as catalysts for phenol hydroxylation. Applied Clay Science, 2003, 22, 263-277.	2.6	66
29	Encapsulation of enzymes in alumina membranes of controlled pore size. Thin Solid Films, 2006, 495, 321-326.	0.8	66
30	A Colloidal Route for Delamination of Layered Solids: Novel Porous-Clay Nanocomposites. Advanced Functional Materials, 2006, 16, 401-409.	7.8	64
31	Intercalation of Poly(Ethylene Oxide) Derivatives into Layered Double Hydroxides. European Journal of Inorganic Chemistry, 2003, 2003, 1242-1251.	1.0	62
32	Ultrasound assisted preparation of chitosan–vermiculite bionanocomposite foams for cadmium uptake. Applied Clay Science, 2016, 130, 40-49.	2.6	60
33	Influence of iron in the formation of conductive polypyrrole-clay nanocomposites. Applied Clay Science, 2005, 28, 183-198.	2.6	59
34	Multifunctional materials based on graphene-like/sepiolite nanocomposites. Applied Clay Science, 2010, 47, 203-211.	2.6	59
35	Ionic conductivity in layer silicates controlled by intercalation of macrocyclic and polymeric oxyethylene compounds. Electrochimica Acta, 1992, 37, 1573-1577.	2.6	58
36	Functionalized Carbon–Silicates from Caramel–Sepiolite Nanocomposites. Angewandte Chemie - International Edition, 2007, 46, 923-925.	7.2	58

#	Article	IF	CITATIONS
37	Temperature influence on the anodic growth of self-aligned Titanium dioxide nanotube arrays. Journal of Magnetism and Magnetic Materials, 2007, 316, 110-113.	1.0	58
38	Progress in Bionanocomposite and Bioinspired Foams. Advanced Materials, 2011, 23, 5262-5267.	11.1	58
39	New silica/alumina–clay heterostructures: Properties as acid catalysts. Microporous and Mesoporous Materials, 2012, 147, 157-166.	2.2	58
40	ZnO/clay nanoarchitectures: Synthesis, characterization and evaluation as photocatalysts. Applied Clay Science, 2016, 131, 131-139.	2.6	58
41	Advanced Materials and New Applications of Sepiolite and Palygorskite. Developments in Clay Science, 2011, 3, 393-452.	0.3	57
42	Sepiolite nanoplatform for the simultaneous assembly of magnetite and zinc oxide nanoparticles as photocatalyst for improving removal of organic pollutants. Journal of Hazardous Materials, 2017, 340, 281-290.	6.5	57
43	Gelatin-Clay Bio-Nanocomposites: Structural and Functional Properties as Advanced Materials. Journal of Nanoscience and Nanotechnology, 2009, 9, 221-229.	0.9	52
44	Phospholipid–Sepiolite Biomimetic Interfaces for the Immobilization of Enzymes. ACS Applied Materials & Interfaces, 2011, 3, 4339-4348.	4.0	51
45	Photoactive nanoarchitectures based on clays incorporating TiO ₂ and ZnO nanoparticles. Beilstein Journal of Nanotechnology, 2019, 10, 1140-1156.	1.5	50
46	Silica/montmorillonite nanoarchitectures and layered double hydroxide-SPEEK based composite membranes for fuel cells applications. Applied Clay Science, 2019, 174, 77-85.	2.6	50
47	Functional Hybrid Nanopaper by Assembling Nanofibers of Cellulose and Sepiolite. Advanced Functional Materials, 2018, 28, 1703048.	7.8	49
48	Zein-Fibrous Clays Biohybrid Materials. European Journal of Inorganic Chemistry, 2012, 2012, 5216-5224.	1.0	45
49	Functional biohybrid materials based on halloysite, sepiolite and cellulose nanofibers for health applications. Dalton Transactions, 2020, 49, 3830-3840.	1.6	45
50	Poly(3,4-ethylenedioxythiophene)–clay nanocomposites. Journal of Materials Chemistry, 2008, 18, 2227.	6.7	44
51	Composite Nanoarchitectonics: Alginate Beads Encapsulating Sepiolite/Magnetite/Prussian Blue for Removal of Cesium Ions from Water. Bulletin of the Chemical Society of Japan, 2021, 94, 122-132.	2.0	44
52	Intercalation of metformin into montmorillonite. Dalton Transactions, 2018, 47, 3185-3192.	1.6	43
53	Multifunctional Porous Materials Through Ferrofluids. Advanced Materials, 2011, 23, 5224-5228.	11.1	42
54	Immobilization of Nanoparticles on Fibrous Clay Surfaces: Towards Promising Nanoplatforms for Advanced Functional Applications. Chemical Record, 2018, 18, 1125-1137.	2.9	42

4

#	Article	IF	CITATIONS
55	Water transport across polystyrenesulfonate/alumina composite membranes. Journal of Membrane Science, 1995, 99, 185-195.	4.1	40
56	INORGANIC -ORGANIC NANOCOMPOSITE MATERIALS BASED ON MACROCYCLIC COMPOUNDS. Reviews in Inorganic Chemistry, 2001, 21, 125-159.	1.8	40
57	Porous membranes for the preparation of magnetic nanostructures. Journal of Magnetism and Magnetic Materials, 2002, 249, 214-219.	1.0	40
58	Bionanocomposite foams based on the assembly of starch and alginate with sepiolite fibrous clay. Carbohydrate Polymers, 2017, 157, 1933-1939.	5.1	40
59	New polyoxyethylene intercalation materials in vanadium oxide xerogel. Journal of Materials Chemistry, 1992, 2, 581.	6.7	39
60	Silicate-based multifunctional nanostructured materials with magnetite and Prussian blue: application to cesium uptake. RSC Advances, 2014, 4, 35415.	1.7	39
61	A new silver-ion selective sensor based on a polythiacrown-ether entrapped by sol–gel. Electrochimica Acta, 2002, 47, 2281-2287.	2.6	38
62	Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores. Nanoscale Research Letters, 2007, 2, 355-363.	3.1	38
63	Intercalation of Macrocyclic Compounds (Crown Ethers and Cryptands) into 2:1 Phyllosilicates. Stability and Calorimetric Study. Langmuir, 1994, 10, 1207-1212.	1.6	37
64	Silica/clay organo-heterostructures to promote polyethylene–clay nanocomposites by in situ polymerization. Applied Catalysis A: General, 2013, 453, 142-150.	2.2	37
65	Novel architectures in porous materials based on clays. Journal of Sol-Gel Science and Technology, 2014, 70, 307-316.	1.1	37
66	Bionanocomposites containing magnetic graphite as potential systems for drug delivery. International Journal of Pharmaceutics, 2014, 477, 553-563.	2.6	36
67	Reprint of ZnO/sepiolite heterostructured materials for solar photocatalytic degradation of pharmaceuticals in wastewater. Applied Clay Science, 2018, 160, 3-8.	2.6	36
68	Bio-Nanohybrids Based on Layered Inorganic Solids: Gelatin Nanocomposites. Current Nanoscience, 2006, 2, 231-241.	0.7	36
69	Bionanocomposites based on layered silicates and cationic starch as eco-friendly adsorbents for hexavalent chromium removal. Dalton Transactions, 2014, 43, 10512-10520.	1.6	35
70	Cellular uptake pathways of sepiolite nanofibers and DNA transfection improvement. Scientific Reports, 2017, 7, 5586.	1.6	35
71	The Maya blue nanostructured material concept applied to colouring geopolymers. RSC Advances, 2015, 5, 98834-98841.	1.7	34
72	Silica–alumina/sepiolite nanoarchitectures. Journal of Materials Chemistry A, 2013, 1, 7477.	5.2	33

#	Article	IF	CITATIONS
73	Clay-bionanocomposites with sacran megamolecules for the selective uptake of neodymium. Journal of Materials Chemistry A, 2014, 2, 1391-1399.	5.2	33
74	Physical interactions between DNA and sepiolite nanofibers, and potential application for DNA transfer into mammalian cells. Scientific Reports, 2016, 6, 36341.	1.6	33
75	Reactive nanocomposites based on pillared clays. Journal of Materials Chemistry, 1999, 9, 161-167.	6.7	32
76	Design and preparation of bionanocomposites based on layered solids with functional and structural properties. Materials Science and Technology, 2008, 24, 1100-1110.	0.8	32
77	The Meeting Point of Carbonaceous Materials and Clays: Toward a New Generation of Functional Composites. Advanced Functional Materials, 2018, 28, 1704323.	7.8	32
78	Preparation and characterization of LiNi0.8Co0.2O2/PANI microcomposite electrode materials under assisted ultrasonic irradiation. Journal of Solid State Chemistry, 2006, 179, 308-314.	1.4	31
79	Toward a green way for the chemical production of supported graphenes using porous solids. Journal of Materials Chemistry A, 2014, 2, 2009-2017.	5.2	31
80	Hydrophobic composite foams based on nanocellulose-sepiolite for oil sorption applications. Journal of Hazardous Materials, 2021, 417, 126068.	6.5	31
81	Lipidâ€Based Bioâ€Nanohybrids for Functional Stabilisation of Influenza Vaccines. European Journal of Inorganic Chemistry, 2012, 2012, 5186-5191.	1.0	30
82	Silica-Sepiolite Nanoarchitectures. Journal of Nanoscience and Nanotechnology, 2013, 13, 2897-2907.	0.9	30
83	TiO2-clay based nanoarchitectures for enhanced photocatalytic hydrogen production. Microporous and Mesoporous Materials, 2016, 222, 120-127.	2.2	30
84	Bionanocomposites based on polysaccharides and fibrous clays for packaging applications. Journal of Applied Polymer Science, 2016, 133, .	1.3	29
85	Layered double hydroxide/sepiolite heterostructured materials. Applied Clay Science, 2016, 130, 83-92.	2.6	29
86	Pervaporation separation of ethanol/water mixtures by polystyrenesulfonate/alumina composite membranes. Journal of Membrane Science, 1995, 107, 199-207.	4.1	27
87	Use of biopolymers as oriented supports for the stabilization of different polymorphs of biomineralized calcium carbonate with complex shape. Journal of Crystal Growth, 2008, 310, 5331-5340.	0.7	27
88	Biomimetic Architectures for the Impedimetric Discrimination of Influenza Virus Phenotypes. Advanced Functional Materials, 2013, 23, 254-262.	7.8	27
89	Graphene-Clay Based Nanomaterials for Clean Energy Storage. Science of Advanced Materials, 2014, 6, 151-158.	0.1	27
90	Amino-polysiloxane hybrid materials as carbon composite electrodes for potentiometric detection of anions. Journal of Materials Chemistry, 2005, 15, 3844.	6.7	26

#	Article	IF	CITATIONS
91	Amelioration of PEMFC performance at high temperature by incorporation of nanofiller (sepiolite/layered double hydroxide) in Nafion membrane. International Journal of Hydrogen Energy, 2019, 44, 10666-10676.	3.8	26
92	Chitosan and pectin core–shell beads encapsulating metformin–clay intercalation compounds for controlled delivery. New Journal of Chemistry, 2020, 44, 10102-10110.	1.4	26
93	Composite membranes based on macrocycle/polysiloxanes: preparation, characterization and electrochemical behaviour. Journal of Materials Chemistry, 1995, 5, 817-825.	6.7	25
94	Algae–silica systems as functional hybrid materials. Journal of Materials Chemistry, 2010, 20, 9362-9369.	6.7	25
95	Hierarchically structured bioactive foams based on polyvinyl alcohol–sepiolite nanocomposites. Journal of Materials Chemistry B, 2013, 1, 2911.	2.9	25
96	Recent Advances on Fibrous Clay-Based Nanocomposites. Advances in Polymer Science, 2014, , 39-86.	0.4	25
97	Hybrid materials based on vanadium pentoxide intercalation complexes. Colloid and Polymer Science, 2001, 279, 990-1004.	1.0	24
98	Biorefinery of Lignocellulosic Biomass from an Elm Clone: Production of Fermentable Sugars and Ligninâ€Derived Biochar for Energy and Environmental Applications. Energy Technology, 2019, 7, 277-287.	1.8	24
99	Electrochemical characterization of composite membranes based on crown-ethers intercalated into montmorillonite. Colloid and Polymer Science, 1994, 272, 712-720.	1.0	23
100	Effective intercalation of zein into Na-montmorillonite: role of the protein components and use of the developed biointerfaces. Beilstein Journal of Nanotechnology, 2016, 7, 1772-1782.	1.5	23
101	Nanoarchitectures Based on Layered Titanosilicates Supported on Glass Fibers: Application to Hydrogen Storage. Langmuir, 2013, 29, 7449-7455.	1.6	22
102	Organoclay hybrid materials as precursors of porous ZnO/silica-clay heterostructures for photocatalytic applications. Beilstein Journal of Nanotechnology, 2016, 7, 1971-1982.	1.5	22
103	Smectite-chitosan-based electrodes in electrochemical detection of phenol and its derivatives. Applied Clay Science, 2016, 124-125, 62-68.	2.6	21
104	Proton conductivity in Al-montmorillonite pillared clays. Solid State Ionics, 1996, 85, 313-317.	1.3	20
105	Magnetic behaviour of arrays of Ni nanowires by electrodeposition into self-aligned titania nanotubes. Journal of Magnetism and Magnetic Materials, 2005, 294, e69-e72.	1.0	20
106	Amperometric Sensors Based on Mercaptopyridineâ^'Montmorillonite Intercalation Compounds. Chemistry of Materials, 2005, 17, 708-715.	3.2	20
107	Novel magnetic organic–inorganic nanostructured materials. Journal of Materials Chemistry, 2007, 17, 4233.	6.7	20
108	Bio-nanocomposites by Assembling of Gelatin and Layered Perovskite Mixed Oxides. Journal of Nanoscience and Nanotechnology, 2006, 6, 1602-1610.	0.9	19

#	Article	IF	CITATIONS
109	Preparation and properties as positive electrodes of PANI–LiNi0.8Co0.2O2 nanocomposites. Journal of Materials Chemistry, 2008, 18, 3965.	6.7	19
110	Multicomponent bionanocomposites based on clay nanoarchitectures for electrochemical devices. Beilstein Journal of Nanotechnology, 2019, 10, 1303-1315.	1.5	19
111	Layered double hydroxide/sepiolite hybrid nanoarchitectures for the controlled release of herbicides. Beilstein Journal of Nanotechnology, 2019, 10, 1679-1690.	1.5	19
112	Ultrasound-assisted preparation of nanocomposites based on fibrous clay minerals and nanocellulose from microcrystalline cellulose. Applied Clay Science, 2020, 189, 105538.	2.6	18
113	Characterization of cobalt nanowires by means of force microscopy. IEEE Transactions on Magnetics, 2000, 36, 2981-2983.	1.2	16
114	Sepiolite as a New Nanocarrier for DNA Transfer into Mammalian Cells: Proof of Concept, Issues and Perspectives. Chemical Record, 2018, 18, 849-857.	2.9	16
115	CLAY-BASED BIOHYBRID MATERIALS FOR BIOMEDICAL AND PHARMACEUTICAL APPLICATIONS. Clays and Clay Minerals, 2019, 67, 44-58.	0.6	16
116	Organosilicic membranes doped with crown-ethers. Journal of Materials Chemistry, 1993, 3, 687-688.	6.7	15
117	Sepiolite-carbon nanocomposites doped with Pd as improving catalysts for hydrodechlorination processes. Applied Clay Science, 2018, 161, 132-138.	2.6	15
118	Theoretical and experimental investigation on the intercalation of metformin into layered clay minerals. Applied Clay Science, 2020, 186, 105418.	2.6	15
119	Incorporating of layered double hydroxide/sepiolite to improve the performance of sulfonated poly(ether ether ketone) composite membranes for proton exchange membrane fuel cells. Journal of Applied Polymer Science, 2021, 138, 50364.	1.3	15
120	Conducting macroporous carbon foams derived from microwave-generated caramel/silica gel intermediates. Journal of Materials Science, 2017, 52, 11269-11281.	1.7	15
121	Polymer-Clay Nanocomposites as Precursors of Nanostructured Carbon Materials for Electrochemical Devices: Templating Effect of Clays. Journal of Nanoscience and Nanotechnology, 2008, 8, 1741-1750.	0.9	15
122	Influence of citrate/nitrate ratio on the preparation of Li0.5La0.5TiO3 nanopowder by combustion method. Ceramics International, 2014, 40, 249-256.	2.3	14
123	Titanosilicate-sepiolite hybrid nanoarchitectures for hydrogen technologies applications. Journal of Solid State Chemistry, 2019, 270, 287-294.	1.4	14
124	Biotechnological applications of the sepiolite interactions with bacteria: Bacterial transformation and DNA extraction. Applied Clay Science, 2020, 191, 105613.	2.6	14
125	Template Synthesis of Nanostructured Carbonaceous Materials for Application in Electrochemical Devices. Current Nanoscience, 2009, 5, 506-513.	0.7	14
126	Sepiolite-Hydrogels: Synthesis by Ultrasound Irradiation and Their Use for the Preparation of Functional Clay-Based Nanoarchitectured Materials. Frontiers in Chemistry, 2021, 9, 733105.	1.8	12

#	Article	IF	CITATIONS
127	Nanocomposite materials based on organopolysiloxane/macrocyle systems for electrochemical sensors. Journal of Materials Processing Technology, 2003, 143-144, 5-10.	3.1	11
128	Preparation of an Li0.7Ni0.8Co0.2O2 Electrode Material From a New Li-Co-Ni Mixed-Citrate Precursor. European Journal of Inorganic Chemistry, 2005, 2005, 2698-2705.	1.0	11
129	PROGRESS IN BIONANOCOMPOSITE MATERIALS. Annual Review of Nano Research, 2009, , 149-189.	0.2	11
130	Responses of human cells to sepiolite interaction. Applied Clay Science, 2020, 194, 105655.	2.6	11
131	Insertion of In(III) and Ga(III) into MPS3 (M = Mn, Cd) layered materials. Materials Research Bulletin, 1999, 34, 673-683.	2.7	9
132	One-Step Patterning of Hybrid Xerogel Materials for the Fabrication of Disposable Solid-State Light Emitters. ACS Applied Materials & Interfaces, 2012, 4, 5029-5037.	4.0	9
133	Advanced biohybrid materials based on nanoclays for biomedical applications. Proceedings of SPIE, 2012, , .	0.8	9
134	Magnetic and electronic properties of bimagnetic materials comprising cobalt particles within hollow silica decorated with magnetite nanoparticles. Journal of Applied Physics, 2013, 114, .	1.1	9
135	Nanostructured carbon–metal hybrid aerogels from bacterial cellulose. RSC Advances, 2017, 7, 42203-42210.	1.7	9
136	Clay-lipid nanohybrids: towards influenza vaccines and beyond. Clay Minerals, 2016, 51, 529-538.	0.2	8
137	Silacrown Ethers-Clay Intercalation Materials: Application in Potentiometric Sensors for Detection of Alkali-Ions. Bulletin of the Chemical Society of Japan, 2018, 91, 608-616.	2.0	8
138	Silica-layered double hydroxide nanoarchitectured materials. Applied Clay Science, 2019, 171, 65-73.	2.6	8
139	Tailoring the properties of nanocellulose-sepiolite hybrid nanopapers by varying the nanocellulose type and clay content. Cellulose, 2022, 29, 5265-5287.	2.4	8
140	Chitosan-Clay Bio-Nanocomposites. Green Energy and Technology, 2012, , 365-391.	0.4	7
141	Zeolite–sepiolite nanoheterostructures. Journal of Nanostructure in Chemistry, 2014, 4, 1.	5.3	7
142	Zein-layered hydroxide biohybrids: strategies of synthesis and characterization. Materials, 2020, 13, 825.	1.3	7
143	Nafion/ <scp>SiO₂</scp> @ <scp>TiO₂</scp> â€palygorskite membranes with improved proton conductivity. Journal of Applied Polymer Science, 2022, 139, .	1.3	7
144	Functional Nanocomposites Based on Fibrous Clays. RSC Smart Materials, 2016, , 1-53.	0.1	6

#	Article	IF	CITATIONS
145	Efficient and Ecological Removal of Anionic Pollutants by Cationic Starch-Clay Bionanocomposites. Science of Advanced Materials, 2013, 5, 994-1005.	0.1	6
146	Research and Patents on Coronavirus and COVID-19: A Review. Recent Patents on Nanotechnology, 2020, 14, 328-350.	0.7	6
147	Silacrown modified xerogels as functional hybrid materials for carbon composite electrodes. Comptes Rendus Chimie, 2010, 13, 227-236.	0.2	5
148	Gentamicin-Montmorillonite Intercalation Compounds as an Active Component of Hydroxypropylmethylcellulose Bionanocomposite Films with Antimicrobial Properties. Clays and Clay Minerals, 2021, 69, 576-588.	0.6	5
149	Gelatine-based bio-nanocomposites. , 2011, , 209-233.		4
150	Modulation of Inorganic Matrices for Functional Nanoarchitectures Fabrication: The Simultaneous Effect of Moisture and Temperature in the Preparation of Metakaolin Based Geopolymers. Bulletin of the Chemical Society of Japan, 2018, 91, 1158-1167.	2.0	4
151	Inorganic Nanoarchitectures Based on Sepiolite. , 2016, , 87-100.		4
152	Inorganic Heterostructured Materials Based on Clay Minerals. , 0, , 21-40.		3
153	Preparation and study as positive electrode of Li _{0·33} La _{0·56} TiO ₃ –PANI nanocomposite. Advances in Applied Ceramics, 2012, 111, 480-489.	0.6	1
154	Interdiffusive Surfactant Procedure for the Preparation of Nanoarchitectured Porous Films: Application to the Growth of Titania Thin Films on Silicon Substrates. Langmuir, 2019, 35, 7169-7174.	1.6	1
155	Progress and innovation of nanostructured sulfur cathodes and metal-free anodes for room-temperature Na–S batteries. Beilstein Journal of Nanotechnology, 2021, 12, 995-1020.	1.5	1
156	Clay–Organic Interactions. , 2004, , .		1
157	Oxyhalide Molybdenum(V) Complexes with Diamines. Synthesis and Reactivity in Inorganic, Metal Organic, and Nano Metal Chemistry, 1988, 18, 1039-1048.	1.8	0
158	Characterization of cobalt nanowires by means of force microscopy. , 0, , .		0
159	Preparation of an Li0.7Ni0.8Co0.2O2 Electrode Material from a New Li—Co—Ni Mixed-Citrate Precursor ChemInform, 2005, 36, no.	0.1	0
160	Bionanocomposites based on layered double hydroxides as drug delivery systems. , 2012, , .		0
161	Intercalation and electrical behavior of Ta xMo1-xS2 (x > 0.5) layered mixed disulfides. Journal of the Brazilian Chemical Society, 2012, 23, 415-425.	0.6	0
162	EDITORIAL (The Progress on the Recent Patents on Nanotechnology Contributions). Recent Patents on Nanotechnology, 2013, 7, 1-1.	0.7	0

#	Article	IF	CITATIONS
163	Preface: General Considerations on the 2016 Volume of Recent Patents on Nanotechnology Journal. Recent Patents on Nanotechnology, 2017, 11, 2-2.	0.7	0
164	2018 Annual Report on Recent Patents on Nanotechnology. Recent Patents on Nanotechnology, 2019, 13, 2-2.	0.7	0
165	Improving the Impact Factor of Recent Patents on Nanotechnology. Recent Patents on Nanotechnology, 2020, 14, 2-2.	0.7	0
166	Preface (Recent Patents on Nanotechnology: Impact and Current Trends on Applied Knowledge). Recent Patents on Nanotechnology, 2015, 9, 2-2.	0.7	0