Alaitz Rekondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232151/publications.pdf Version: 2024-02-01

ALAITZ REKONDO

#	Article	IF	CITATIONS
1	Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer, 2022, 239, 124457.	1.8	35
2	Thermoformable and recyclable CFRP pultruded profile manufactured from an epoxy vitrimer. Polymer Testing, 2021, 93, 106931.	2.3	25
3	The effect of matrix on shape properties of aromatic disulfide based epoxy vitrimers. European Polymer Journal, 2021, 148, 110362.	2.6	23
4	Recyclable flame-retardant epoxy composites based on disulfide bonds: Flammability and recyclability. Composites Communications, 2021, 25, 100754.	3.3	36
5	Build-To-Specification Vanillin and Phloroglucinol Derived Biobased Epoxy-Amine Vitrimers. Polymers, 2020, 12, 2645.	2.0	17
6	Effect of Regioisomerism on Processability and Mechanical Properties of Amine/Urea Exchange Based Poly(urea-urethane) Vitrimers. ACS Applied Polymer Materials, 2019, 1, 2472-2481.	2.0	25
7	Paving the way for a wider use of composites in railway industry. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1811-1822.	2.0	2
8	Improved Thermal Insulating Properties of Renewable Polyol Based Polyurethane Foams Reinforced with Chicken Feathers. Polymers, 2019, 11, 2002.	2.0	17
9	Reprocessable and recyclable crosslinked poly(urea-urethane)s based on dynamic amine/urea exchange. Polymer, 2018, 145, 127-136.	1.8	77
10	Flexible Biocomposites with Enhanced Interfacial Compatibility Based on Keratin Fibers and Sulfur-Containing Poly(urea-urethane)s. Polymers, 2018, 10, 1056.	2.0	7
11	Fully Biodegradable Biocomposites with High Chicken Feather Content. Polymers, 2017, 9, 593.	2.0	52
12	Dynamic sulfur chemistry as a key tool in the design of self-healing polymers. Smart Materials and Structures, 2016, 25, 084017.	1.8	57
13	Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Materials Horizons, 2016, 3, 241-247.	6.4	613
14	"Metallophilic crosslinking―to provide fast-curing and mendable poly(urethane-metallothiolate) elastomers. Journal of Polymer Science Part A, 2015, 53, 1061-1066.	2.5	12
15	Mixing the immiscible: blends of dynamic polymer networks. RSC Advances, 2015, 5, 17514-17518.	1.7	35
16	Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Materials Horizons, 2014, 1, 237-240.	6.4	686
17	The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. Journal of Materials Chemistry A, 2014, 2, 5710.	5.2	215
18	Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chemical Communications, 2012, 48, 8255.	2.2	48