Alaitz Rekondo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232151/publications.pdf

Version: 2024-02-01

18	1,999	15	19
papers	citations	h-index	g-index
19	19	19	1933
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Catalyst-free room-temperature self-healing elastomers based on aromatic disulfide metathesis. Materials Horizons, $2014,1,237\text{-}240.$	6.4	686
2	Epoxy resin with exchangeable disulfide crosslinks to obtain reprocessable, repairable and recyclable fiber-reinforced thermoset composites. Materials Horizons, 2016, 3, 241-247.	6.4	613
3	The processability of a poly(urea-urethane) elastomer reversibly crosslinked with aromatic disulfide bridges. Journal of Materials Chemistry A, 2014, 2, 5710.	5.2	215
4	Reprocessable and recyclable crosslinked poly(urea-urethane)s based on dynamic amine/urea exchange. Polymer, 2018, 145, 127-136.	1.8	77
5	Dynamic sulfur chemistry as a key tool in the design of self-healing polymers. Smart Materials and Structures, 2016, 25, 084017.	1.8	57
6	Fully Biodegradable Biocomposites with High Chicken Feather Content. Polymers, 2017, 9, 593.	2.0	52
7	Room temperature self-healing power of silicone elastomers having silver nanoparticles as crosslinkers. Chemical Communications, 2012, 48, 8255.	2.2	48
8	Recyclable flame-retardant epoxy composites based on disulfide bonds: Flammability and recyclability. Composites Communications, 2021, 25, 100754.	3.3	36
9	Mixing the immiscible: blends of dynamic polymer networks. RSC Advances, 2015, 5, 17514-17518.	1.7	35
10	Chemical control of the aromatic disulfide exchange kinetics for tailor-made epoxy vitrimers. Polymer, 2022, 239, 124457.	1.8	35
11	Effect of Regioisomerism on Processability and Mechanical Properties of Amine/Urea Exchange Based Poly(urea-urethane) Vitrimers. ACS Applied Polymer Materials, 2019, 1, 2472-2481.	2.0	25
12	Thermoformable and recyclable CFRP pultruded profile manufactured from an epoxy vitrimer. Polymer Testing, 2021, 93, 106931.	2.3	25
13	The effect of matrix on shape properties of aromatic disulfide based epoxy vitrimers. European Polymer Journal, 2021, 148, 110362.	2.6	23
14	Improved Thermal Insulating Properties of Renewable Polyol Based Polyurethane Foams Reinforced with Chicken Feathers. Polymers, 2019, 11, 2002.	2.0	17
15	Build-To-Specification Vanillin and Phloroglucinol Derived Biobased Epoxy-Amine Vitrimers. Polymers, 2020, 12, 2645.	2.0	17
16	"Metallophilic crosslinking―to provide fast-curing and mendable poly(urethane-metallothiolate) elastomers. Journal of Polymer Science Part A, 2015, 53, 1061-1066.	2.5	12
17	Flexible Biocomposites with Enhanced Interfacial Compatibility Based on Keratin Fibers and Sulfur-Containing Poly(urea-urethane)s. Polymers, 2018, 10, 1056.	2.0	7
18	Paving the way for a wider use of composites in railway industry. Journal of Thermal Analysis and Calorimetry, 2019, 138, 1811-1822.	2.0	2