
Lydia L Sohn

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232007/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Replica molding using polymeric materials: A practical step toward nanomanufacturing. Advanced Materials, 1997, 9, 147-149.	21.0	285
2	An Artificial Nanopore for Molecular Sensing. Nano Letters, 2003, 3, 37-38.	9.1	243
3	Endothelial cell polarization and chemotaxis in a microfluidic device. Lab on A Chip, 2008, 8, 1292.	6.0	191
4	Direct detection of antibody-antigen binding using an on-chip artificial pore. Proceedings of the National Academy of Sciences of the United States of America, 2003, 100, 820-824.	7.1	172
5	Personalized Exposure Assessment: Promising Approaches for Human Environmental Health Research. Environmental Health Perspectives, 2005, 113, 840-848.	6.0	115
6	Single cell clustering based on cell-pair differentiability correlation and variance analysis. Bioinformatics, 2018, 34, 3684-3694.	4.1	74
7	Single-molecule sequence detection via microfluidic planar extensional flow at a stagnation point. Lab on A Chip, 2010, 10, 1543.	6.0	61
8	Developments in labelâ€free microfluidic methods for singleâ€cell analysis and sorting. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2019, 11, e1529.	6.1	50
9	Characterizing cellular mechanical phenotypes with mechano-node-pore sensing. Microsystems and Nanoengineering, 2018, 4, .	7.0	38
10	Cell characterization using a protein-functionalized pore. Lab on A Chip, 2008, 8, 1478.	6.0	36
11	Recapitulating complex biological signaling environments using a multiplexed, DNA-patterning approach. Science Advances, 2020, 6, eaay5696.	10.3	34
12	Node-pore sensing: a robust, high-dynamic range method for detecting biological species. Lab on A Chip, 2013, 13, 1302.	6.0	32
13	Constructive remodeling of a synthetic endothelial extracellular matrix. Scientific Reports, 2016, 5, 18290.	3.3	28
14	A quantum leap for electronics. Nature, 1998, 394, 131-132.	27.8	27
15	Fluorescent Marker for Direct Detection of Specific dsDNA Sequences. Analytical Chemistry, 2009, 81, 10049-10054.	6.5	24
16	Node-Pore Sensing Enables Label-Free Surface-Marker Profiling of Single Cells. Analytical Chemistry, 2015, 87, 2988-2995.	6.5	22
17	The promise of single-cell mechanophenotyping for clinical applications. Biomicrofluidics, 2020, 14, 031301.	2.4	21
18	Visco-Node-Pore Sensing: A Microfluidic Rheology Platform to Characterize Viscoelastic Properties of Epithelial Cells. IScience, 2019, 13, 214-228.	4.1	19

Lydia L Sohn

#	Article	IF	CITATIONS
19	SIDEseq: A Cell Similarity Measure Defined by Shared Identified Differentially Expressed Genes for Single-Cell RNA sequencing Data. Statistics in Biosciences, 2017, 9, 200-216.	1.2	17
20	Hydrophobic Patterningâ€Based 3D Microfluidic Cell Culture Assay. Advanced Healthcare Materials, 2018, 7, e1800122.	7.6	14
21	Barker-Coded node-pore resistive pulse sensing with built-in coincidence correction. , 2017, 2017, 1053-1057.		13
22	Node-Pore Coded Coincidence Correction: Coulter Counters, Code Design, and Sparse Deconvolution. IEEE Sensors Journal, 2018, 18, 3068-3079.	4.7	11
23	How Can Microfluidic and Microfabrication Approaches Make Experiments More Physiologically Relevant?. Cell Systems, 2020, 11, 209-211.	6.2	11
24	Simple, Affordable, and Modular Patterning of Cells using DNA. Journal of Visualized Experiments, 2021, , .	0.3	6
25	High-throughput microfluidic device for rare cell isolation. , 2015, 9518, .		5
26	Patterning the Geometry of Human Embryonic Stem Cell Colonies on Compliant Substrates to Control Tissue-Level Mechanics. Journal of Visualized Experiments, 2019, , .	0.3	4
27	DNAâ€Directed Patterning for Versatile Validation and Characterization of a Lipidâ€Based Nanoparticle Model of SARSâ€CoVâ€2. Advanced Science, 2021, 8, e2101166.	11.2	4
28	Mechanical phenotyping reveals unique biomechanical responses in retinoic acid-resistant acute promyelocytic leukemia. IScience, 2022, 25, 103772.	4.1	4
29	Deep proteome profiling of human mammary epithelia at lineage and age resolution. IScience, 2021, 24, 103026.	4.1	3
30	Multiplexed DNA-Directed Patterning of Antibodies for Applications in Cell Subpopulation Analysis. ACS Applied Materials & Interfaces, 2021, 13, 46421-46430.	8.0	1
31	Cell Screening Using Resistive-Pulse Sensing. Methods in Cell Biology, 2012, 112, 369-387.	1.1	1
32	Use of Stagnation Point Flows for DNA Trapping, Manipulation, and Target Sequence Detection. AIP Conference Proceedings, 2008, , .	0.4	0
33	Evaluating sources of technical variability in the mechano-node-pore sensing pipeline and their effect on the reproducibility of single-cell mechanical phenotyping. PLoS ONE, 2021, 16, e0258982.	2.5	0
34	High-Throughput Microfluidic Device for Circulating Tumor Cell Isolation from Whole Blood. International Conference on Miniaterized Systems for Chemistry and Life Sciences [proceedings], 2015, 2015, 413-415.	0.0	0
35	APPLICATION OF DNA-DIRECTED PATTERNING TO FABRICATE AN IN VITRO BONE MARROW MICROENVIRONMENT FOR THE HIGH-THROUGHPUT STUDY OF PROSTATE CANCER DORMANCY. International Conference on Miniaterized Systems for Chemistry and Life Sciences [proceedings], 2019, 2019. 640-641.	0.0	0
36	Node-Pore Sensing for Characterizing Cells and Extracellular Vesicles. Methods in Molecular Biology, 2022, 2394, 171-183.	0.9	0

#	Article	IF	CITATIONS
37	Detecting Intact Virus Using Exogenous Oligonucleotide Labels. Analytical Chemistry, 2022, 94, 7619-7627.	6.5	0