Quan Xu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8232006/publications.pdf

Version: 2024-02-01

128	7,329	42	82
papers	citations	h-index	g-index
129	129	129	10452
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Preparation of highly photoluminescent sulfur-doped carbon dots for Fe(<scp>iii</scp>) detection. Journal of Materials Chemistry A, 2015, 3, 542-546.	5.2	558
2	N-doped graphene as catalysts for oxygen reduction and oxygen evolution reactions: Theoretical considerations. Journal of Catalysis, 2014, 314, 66-72.	3.1	537
3	Strain and structure heterogeneity in MoS2 atomic layers grown by chemical vapour deposition. Nature Communications, 2014, 5, 5246.	5.8	453
4	Heteroatom-doped carbon dots: synthesis, characterization, properties, photoluminescence mechanism and biological applications. Journal of Materials Chemistry B, 2016, 4, 7204-7219.	2.9	396
5	Redâ€Carbonâ€Quantumâ€Dotâ€Doped SnO ₂ Composite with Enhanced Electron Mobility for Efficient and Stable Perovskite Solar Cells. Advanced Materials, 2020, 32, e1906374.	11.1	230
6	Red/orange dual-emissive carbon dots for pH sensing and cell imaging. Nano Research, 2019, 12, 815-821.	5.8	196
7	Role of lattice defects in catalytic activities of graphene clusters for fuel cells. Physical Chemistry Chemical Physics, 2015, 17, 16733-16743.	1.3	181
8	High photoluminescence quantum yield of 18.7% by using nitrogen-doped Ti ₃ C ₂ MXene quantum dots. Journal of Materials Chemistry C, 2018, 6, 6360-6369.	2.7	159
9	Synthesis, mechanistic investigation, and application of photoluminescent sulfur and nitrogen co-doped carbon dots. Journal of Materials Chemistry C, 2015, 3, 9885-9893.	2.7	154
10	Hydrogel smart windows. Journal of Materials Chemistry A, 2020, 8, 10007-10025.	5.2	154
11	Highly fluorescent Zn-doped carbon dots as Fenton reaction-based bio-sensors: an integrative experimental–theoretical consideration. Nanoscale, 2016, 8, 17919-17927.	2.8	141
12	Highly fluorescent Ti ₃ C ₂ MXene quantum dots for macrophage labeling and Cu ²⁺ ion sensing. Nanoscale, 2019, 11, 14123-14133.	2.8	140
13	Recent advances in delivery of photosensitive metal-based drugs. Coordination Chemistry Reviews, 2019, 387, 154-179.	9.5	136
14	Function-driven engineering of 1D carbon nanotubes and 0D carbon dots: mechanism, properties and applications. Nanoscale, 2019, 11, 1475-1504.	2.8	134
15	Controlled fabrication and enhanced visible-light photocatalytic hydrogen production of Au@CdS/MIL-101 heterostructure. Applied Catalysis B: Environmental, 2016, 185, 307-314.	10.8	131
16	Robust self-cleaning and micromanipulation capabilities of gecko spatulae and their bio-mimics. Nature Communications, 2015, 6, 8949.	5.8	124
17	Graphene and graphene oxide: advanced membranes for gas separation and water purification. Inorganic Chemistry Frontiers, 2015, 2, 417-424.	3.0	118
18	Self-Assembling Peptide Nanofibrous Hydrogel as a Versatile Drug Delivery Platform. Current Pharmaceutical Design, 2015, 21, 4342-4354.	0.9	114

#	Article	IF	Citations
19	Near infrared quantum dots in biomedical applications: current status and future perspective. Wiley Interdisciplinary Reviews: Nanomedicine and Nanobiotechnology, 2018, 10, e1483.	3.3	113
20	Guiding Principles for Designing Highly Efficient Metalâ€Free Carbon Catalysts. Advanced Materials, 2019, 31, e1805252.	11.1	110
21	Two-dimensional quantum dots: Fundamentals, photoluminescence mechanism and their energy and environmental applications. Materials Today Energy, 2018, 10, 222-240.	2.5	87
22	Biomimetic self-cleaning surfaces: synthesis, mechanism and applications. Journal of the Royal Society Interface, 2016, 13, 20160300.	1.5	86
23	Hydrochromic full-color MXene quantum dots through hydrogen bonding toward ultrahigh-efficiency white light-emitting diodes. Applied Materials Today, 2019, 16, 90-101.	2.3	86
24	Near-infrared light-driven photofixation of nitrogen over Ti3C2Tx/TiO2 hybrid structures with superior activity and stability. Applied Catalysis B: Environmental, 2020, 273, 119072.	10.8	86
25	Nanomechanical Properties of Ti ₃ C ₂ Mxene. Langmuir, 2019, 35, 14481-14485.	1.6	78
26	Facile synthesis of copper doped carbon dots and their application as a "turn-off―fluorescent probe in the detection of Fe ³⁺ ions. RSC Advances, 2016, 6, 28745-28750.	1.7	75
27	Synthesis, mechanical investigation, and application of nitrogen and phosphorus co-doped carbon dots with a high photoluminescent quantum yield. Nano Research, 2018, 11, 3691-3701.	5.8	75
28	Unconventional smart windows: Materials, structures and designs. Nano Energy, 2021, 90, 106613.	8.2	71
29	Machine learning-guided synthesis of advanced inorganic materials. Materials Today, 2020, 41, 72-80.	8.3	70
30	Full color carbon dots through surface engineering for constructing white light-emitting diodes. Journal of Materials Chemistry C, 2019, 7, 2212-2218.	2.7	69
31	Three-dimensional micro/nanoscale architectures: fabrication and applications. Nanoscale, 2015, 7, 10883-10895.	2.8	68
32	A self-healing hydrogel with pressure sensitive photoluminescence for remote force measurement and healing assessment. Materials Horizons, 2019, 6, 703-710.	6.4	66
33	Metal Charge Transfer Doped Carbon Dots with Reversibly Switchable, Ultra-High Quantum Yield Photoluminescence. ACS Applied Nano Materials, 2018, 1, 1886-1893.	2.4	64
34	Enhancing the luminescence of carbon dots by doping nitrogen element and its application in the detection of Fe(III). Journal of Materials Science, 2015, 50, 2571-2576.	1.7	62
35	Characterization of hydrothermal carbonization products (hydrochars and spent liquor) and their biomethane production performance. Bioresource Technology, 2018, 267, 9-16.	4.8	57
36	Highly fluorescent dual-emission red carbon dots and their applications in optoelectronic devices and water detection. New Journal of Chemistry, 2019, 43, 3050-3058.	1.4	57

#	Article	IF	Citations
37	Quantum dots in cell imaging and their safety issues. Journal of Materials Chemistry B, 2021, 9, 5765-5779.	2.9	57
38	Atomic Plane-Vacancy Engineering of Transition-Metal Dichalcogenides with Enhanced Hydrogen Evolution Capability. ACS Applied Materials & Interfaces, 2019, 11, 25264-25270.	4.0	51
39	Two-dimensional quantum dots for biological applications. Nano Research, 2021, 14, 3820-3839.	5.8	50
40	Poly(vinyl alcohol)/Chitosan composites: Physically transient materials for sustainable and transient bioelectronics. Journal of Cleaner Production, 2018, 195, 786-795.	4.6	49
41	Highly green fluorescent Nb ₂ C MXene quantum dots. Chemical Communications, 2020, 56, 6648-6651.	2.2	49
42	Nano friction and adhesion properties on Ti3C2 and Nb2C MXene studied by AFM. Tribology International, 2021, 153, 106646.	3.0	48
43	Comparison of toxicity of Ti ₃ C ₂ and Nb ₂ C Mxene quantum dots (QDs) to human umbilical vein endothelial cells. Journal of Applied Toxicology, 2021, 41, 745-754.	1.4	46
44	Ultra-low CNTs filled high-performance fast self-healing triboelectric nanogenerators for wearable electronics. Composites Science and Technology, 2021, 208, 108733.	3.8	45
45	The elasticity of MOFs under mechanical pressure. RSC Advances, 2016, 6, 37506-37514.	1.7	42
46	Recent development in friction of 2D materials: from mechanisms to applications. Nanotechnology, 2021, 32, 312002.	1.3	42
47	Transparent stretchable hydrogel sensors: materials, design and applications. Journal of Materials Chemistry C, 2022, 10, 13351-13371.	2.7	42
48	Facile preparation of high-performance Fe-doped Ce–Mn/TiO ₂ catalysts for the low-temperature selective catalytic reduction of NO _x with NH ₃ . RSC Advances, 2017, 7, 48785-48792.	1.7	40
49	Multicolor carbon nanodots from food waste and their heavy metal ion detection application. RSC Advances, 2018, 8, 23657-23662.	1.7	39
50	Temperature-induced switchable interfacial interactions on slippery surfaces for controllable liquid manipulation. Journal of Materials Chemistry A, 2019, 7, 18510-18518.	5.2	35
51	Metal Coordinationâ€Mediated Functional Grading and Selfâ€Healing in Mussel Byssus Cuticle. Advanced Science, 2019, 6, 1902043.	5.6	35
52	Carbon quantum dots: An innovative additive for water lubrication. Science China Technological Sciences, 2019, 62, 587-596.	2.0	35
53	Barium charge transferred doped carbon dots with ultra-high quantum yield photoluminescence of 99.6% and applications. Chinese Chemical Letters, 2021, 32, 861-865.	4.8	34
54	Mass production of highly fluorescent full color carbon dots from the petroleum coke. Chinese Chemical Letters, 2021, 32, 1532-1536.	4.8	34

#	Article	IF	CITATIONS
55	2D PtS nanorectangles/g-C ₃ N ₄ nanosheets with a metal sulfide–support interaction effect for high-efficiency photocatalytic H ₂ evolution. Materials Horizons, 2021, 8, 612-618.	6.4	34
56	Multicolor tunable highly luminescent carbon dots for remote force measurement and white light emitting diodes. Chemical Communications, 2019, 55, 12164-12167.	2.2	33
57	Enhanced Adhesion of Carbon Nanotubes by Dopamine Modification. Langmuir, 2019, 35, 4527-4533.	1.6	32
58	Dualâ€Metal Sites Boosting Polarization of Nitrogen Molecules for Efficient Nitrogen Photofixation. Advanced Science, 2021, 8, 2100302.	5.6	32
59	Energy Saving and Energy Generation Smart Window with Active Control and Antifreezing Functions. Advanced Science, 2022, 9, e2105184.	5.6	32
60	Wettability of nanotextured metallic glass surfaces. Scripta Materialia, 2013, 69, 732-735.	2.6	31
61	Electrodeposited hydroxyapatite coatings on the TiO2 nanotube in static magnetic field. Applied Surface Science, 2013, 287, 218-222.	3.1	31
62	Dynamic Adhesion Forces between Microparticles and Substrates in Water. Langmuir, 2014, 30, 11103-11109.	1.6	31
63	Photoelectrochemical performance of CdS nanorods grafted vertically aligned TiO2 nanorods. Materials Research Bulletin, 2013, 48, 4548-4554.	2.7	29
64	Dynamic Enhancement in Adhesion Forces of Microparticles on Substrates. Langmuir, 2013, 29, 13743-13749.	1.6	28
65	Photoluminescence mechanism and applications of Zn-doped carbon dots. RSC Advances, 2018, 8, 17254-17262.	1.7	28
66	Nanoscale TiO2 nanotubes govern the biological behavior of human glioma and osteosarcoma cells. International Journal of Nanomedicine, 2015, 10, 2423.	3.3	26
67	High-solid anaerobic digestion of corn straw for methane production and pretreatment of bio-briquette. Bioresource Technology, 2018, 250, 741-749.	4.8	26
68	Surface Properties of Organic Kerogen in Continental and Marine Shale. Langmuir, 2018, 34, 13882-13887.	1.6	26
69	Pyrite nanotube array films as an efficient photocatalyst for degradation of methylene blue and phenol. RSC Advances, 2015, 5, 62724-62731.	1.7	25
70	Changes in microbial community and methanogenesis during high-solid anaerobic digestion of ensiled corn stover. Journal of Cleaner Production, 2020, 242, 118479.	4.6	25
71	Surface wettability effect on aqueous lubrication: Van der Waals and hydration force competition induced adhesive friction. Journal of Colloid and Interface Science, 2021, 599, 667-675.	5.0	25
72	Highly fluorescence Ta4C3 MXene quantum dots as fluorescent nanoprobe for heavy ion detection and stress monitoring of fluorescent hydrogels. Chinese Chemical Letters, 2022, 33, 1850-1854.	4.8	23

#	Article	IF	Citations
73	Multi-color carbon dots for white light-emitting diodes. RSC Advances, 2019, 9, 9700-9708.	1.7	22
74	Promoting potential direct interspecies electron transfer (DIET) and methanogenesis with nitrogen and zinc doped carbon quantum dots. Journal of Hazardous Materials, 2021, 410, 124886.	6.5	22
75	Synthesis of FeS2 (pyrite) nanotube through sulfuration of Fe2O3 nanotube. Materials Letters, 2015, 141, 104-106.	1.3	21
76	Ratiometric fluorescent sensing of copper ion based on chromaticity change strategy. Analytical and Bioanalytical Chemistry, 2017, 409, 6655-6662.	1.9	21
77	Tough Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties of a Dry Self-Cleaning Biomimetic Surface. ACS Applied Materials & Long Reversible Adhesion Properties & Long Reversible &	4.0	21
78	Effects of temperature, hydrogen/carbon monoxide ratio and trace element addition on methane production performance from syngas biomethanation. Bioresource Technology, 2020, 295, 122296.	4.8	21
79	Novel visible-light-driven S-doped carbon dots/BiOI nanocomposites: improved photocatalytic activity and mechanism insight. Journal of Materials Science, 2017, 52, 7282-7293.	1.7	20
80	Progress in Bioinspired Dry and Wet Gradient Materials from Design Principles to Engineering Applications. IScience, 2020, 23, 101749.	1.9	20
81	Antibacterial activities of TiO ₂ nanotubes on Porphyromonas gingivalis. RSC Advances, 2015, 5, 34237-34242.	1.7	19
82	Pyrolysis gas as a carbon source for biogas production via anaerobic digestion. RSC Advances, 2017, 7, 41889-41895.	1.7	19
83	Synthesis of multi-functional green fluorescence carbon dots and their applications as a fluorescent probe for Hg ²⁺ detection and zebrafish imaging. New Journal of Chemistry, 2018, 42, 10400-10405.	1.4	18
84	Functionally Graded Gecko Setae and the Biomimics with Robust Adhesion and Durability. ACS Applied Polymer Materials, 2020, 2, 2658-2666.	2.0	18
85	Metathesis and isomerization of n-butene and ethylene over WO3/SiO2 and MgO catalysts: Thermodynamic and experimental analysis. Applied Catalysis A: General, 2016, 517, 227-235.	2.2	17
86	Bioinspired Photodetachable Dry Self-Cleaning Surface. Langmuir, 2019, 35, 6379-6386.	1.6	17
87	Performance and Microbial Community Analysis of Anaerobic Digestion of Vinegar Residue with Adding of Acetylene Black or Hydrochar. Waste and Biomass Valorization, 2020, 11, 3315-3325.	1.8	17
88	Performance of hydroxyapatite coatings electrodeposited on micro-arc oxidized magnesium alloys using a static magnetic field. RSC Advances, 2015, 5, 14458-14464.	1.7	16
89	Mechanism of byproducts formation in the isobutane/butene alkylation on HY zeolites. RSC Advances, 2018, 8, 3392-3398.	1.7	16
90	Effects of single-stage syngas hydrotreating on the physical and chemical properties of oxidized fractionated bio-oil. Fuel, 2017, 209, 634-642.	3.4	15

#	Article	IF	Citations
91	Nearâ€infrared emission Cu, Nâ€doped carbon dots for human umbilical vein endothelial cell labeling and their biocompatibility in vitro. Journal of Applied Toxicology, 2021, 41, 789-798.	1.4	15
92	Gecko inspired reversible adhesion via quantum dots enabled photo-detachment. Chemical Engineering Journal, 2022, 431, 134081.	6.6	15
93	Synergistic effect of combined hydrothermal carbonization of Fenton's reagent and biomass enhances the adsorption and combustion characteristics of sludge towards eco-friendly and efficient sludge treatment. Science of the Total Environment, 2022, 825, 153854.	3.9	15
94	Gecko-inspired composite micro-pillars with both robust adhesion and enhanced dry self-cleaning property. Chinese Chemical Letters, 2019, 30, 2333-2337.	4.8	13
95	Effect of dilute acid treatment on adhesion properties of Longmaxi black shale. Petroleum Science, 2019, 16, 1320-1331.	2.4	12
96	Sulfur resistance of Ce-Mn/TiO ⟨sub⟩2⟨/sub⟩ catalysts for low-temperature NH ⟨sub⟩3⟨/sub⟩ –SCR. Royal Society Open Science, 2018, 5, 171846.	1.1	11
97	Hydrophobic epoxy resin coated proppants with ultra-high self-suspension ability and enhanced liquid conductivity. Petroleum Science, 2021, 18, 1753-1759.	2.4	11
98	Enhancement of the Wettability and Lubrication of Shale Rock via Nanoemulsions. International Journal of Polymer Science, 2017, 2017, 1-6.	1.2	10
99	Synthesis of Highly Fluorescent Yellowâ€Green Nâ€Doped Carbon Nanorings for pH Variation Detection and Bioimaging. Particle and Particle Systems Characterization, 2018, 35, 1800276.	1.2	10
100	Biological Self-Assembly and Recognition Used to Synthesize and Surface Guide Next Generation of Hybrid Materials. ACS Applied Materials & Samp; Interfaces, 2018, 10, 28372-28381.	4.0	10
101	Near infrared molybdenum oxide quantum dots with high photoluminescence and photothermal performance. Chinese Chemical Letters, 2020, 31, 1616-1619.	4.8	10
102	Fabrication of TiO ₂ –graphene composite for the enhanced performance of lithium batteries. RSC Advances, 2016, 6, 66971-66977.	1.7	9
103	Nanoscale mechanical property of marine and continental organic kerogen in shale. Chinese Chemical Letters, 2020, 31, 509-512.	4.8	9
104	Measurement of Interfacial Energy and Friction Between Carbon Nanotubes and Polymer Matrix by a Micro-Pullout Test. Science of Advanced Materials, 2012, 4, 888-892.	0.1	9
105	Dynamic enhancement in adhesion forces of truncated and nanosphere tips on substrates. RSC Advances, 2015, 5, 91633-91639.	1.7	8
106	Temperature-induced tunable adhesion of gecko setae/spatulae and their biomimics. Materials Today: Proceedings, 2018, 5, 25879-25893.	0.9	8
107	Characteristics of micro-fracturing in shales induced by dilute acid. Journal of Natural Gas Science and Engineering, 2021, 88, 103855.	2.1	8
108	Efficient cocktail chemotherapy by co-delivery of a hydrogen sulfide-releasing aspirin prodrug and paclitaxel via single nanoparticles. RSC Advances, 2017, 7, 13458-13466.	1.7	7

#	Article	IF	Citations
109	Robust and conductive hydrogel based on mussel adhesive chemistry for remote monitoring of body signals. Friction, 2020, , $1.$	3.4	7
110	Reversible adhesion surface coating proppant. Chinese Chemical Letters, 2021, 32, 553-556.	4.8	7
111	Coated proppants with self-suspension and tracer slow-release functions. Journal of Petroleum Science and Engineering, 2022, 208, 109645.	2.1	7
112	Protein self-assembly onto nanodots leads to formation of conductive bio-based hybrids. Scientific Reports, 2016, 6, 38252.	1.6	6
113	Efficient application of carbon-based nanomaterials for high-performance perovskite solar cells. Rare Metals, 2021, 40, 2747-2762.	3.6	6
114	Photo-Detachable Self-Cleaning Surfaces Inspired by Gecko Toepads. Langmuir, 2021, 37, 8410-8416.	1.6	6
115	Formation and Regeneration of Shape-Selective ZSM-35 Catalysts for n-Butene Skeletal Isomerization to Isobutene. ACS Omega, 2018, 3, 8202-8211.	1.6	5
116	Biomimicry Surface-Coated Proppant with Self-Suspending and Targeted Adsorption Ability. ACS Omega, 2020, 5, 25824-25831.	1.6	5
117	Yellow emission N-doped fluorescent carbon dots as fluorescent nanoprobes for the detection of L-threonine in real samples. New Journal of Chemistry, 2021, 45, 10798-10801.	1.4	5
118	Effects of Molecular Weight Reduction on Brittle–Ductile Transition and Elastic Yielding Due to Noninvasive γ Irradiation on Polymer Glasses. Macromolecules, 2017, 50, 2447-2455.	2.2	4
119	Strain-controlled optical transmittance tuning of three-dimensional carbon nanotube architectures. Journal of Materials Chemistry C, 2019, 7, 1927-1933.	2.7	3
120	Interfacial Energy and Friction between Carbon Nanotubes and Polymer Matrix. Mechanics of Advanced Materials and Structures, 2014, 21, 393-401.	1.5	2
121	Bionic PDMS-CDs surface with thermal controllable adhesion. Materials Letters, 2020, 263, 127267.	1.3	2
122	Deep Understanding of the Methanogenic Community and Their Interaction in Batch High-Solid Anaerobic Digestion of Ensiled Straw with Leachate Circulation. Energy & Energy & 2020, 34, 10980-10988.	2.5	2
123	Measurement of Interfacial Energy and Friction Between Carbon Nanotubes and Polymer Matrix via Atomic Force Microscopy. Journal of Nanoscience and Nanotechnology, 2016, 16, 6889-6894.	0.9	1
124	Reaction and Characterization of Low-Temperature Effect of Transition Nanostructure Metal Codoped SCR Catalyst. Journal of Nanomaterials, 2017, 2017, 1-10.	1.5	1
125	Mussel Byssus Cuticle: Metal Coordinationâ€Mediated Functional Grading and Selfâ€Healing in Mussel Byssus Cuticle (Adv. Sci. 23/2019). Advanced Science, 2019, 6, 1970138.	5.6	1
126	Smart Adhesion Surfaces. , 2019, , 261-283.		1

#	Article	IF	CITATIONS
127	Syntheses, mechanisms, and applications of bio-inspired self-cleaning surfaces. , 2022, , 367-392.		1
128	Shaly detritus embedded epoxy-resin coated proppants. Petroleum Science, 2022, 19, 1735-1744.	2.4	1