
Miguel J Bagajewicz

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8231929/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A review of recent design procedures for water networks in refineries and process plants. Computers and Chemical Engineering, 2000, 24, 2093-2113.	2.0	336
2	On the optimality conditions of water utilization systems in process plants with single contaminants. Chemical Engineering Science, 2000, 55, 5035-5048.	1.9	171
3	Energy efficient water utilization systems in process plants. Computers and Chemical Engineering, 2002, 26, 59-79.	2.0	154
4	On the Use of Linear Models for the Design of Water Utilization Systems in Process Plants with a Single Contaminant. Chemical Engineering Research and Design, 2001, 79, 600-610.	2.7	141
5	Managing financial risk in planning under uncertainty. AICHE Journal, 2004, 50, 963-989.	1.8	122
6	Mass/heat-exchange network representation of distillation networks. AICHE Journal, 1992, 38, 1769-1800.	1.8	121
7	Design and retrofit of sensor networks in process plants. AICHE Journal, 1997, 43, 2300-2306.	1.8	113
8	Algorithmic procedure to design water utilization systems featuring a single contaminant in process plants. Chemical Engineering Science, 2001, 56, 1897-1911.	1.9	99
9	Risk Management in the Scheduling of Batch Plants under Uncertain Market Demand. Industrial & Engineering Chemistry Research, 2004, 43, 741-750.	1.8	95
10	Synthesis of non-isothermal heat integrated water networks in chemical processes. Computers and Chemical Engineering, 2008, 32, 3130-3142.	2.0	94
11	On the necessary conditions of optimality of water utilization systems in process plants with multiple contaminants. Chemical Engineering Science, 2003, 58, 5349-5362.	1.9	93
12	On zero water discharge solutions in the process industry. Journal of Environmental Management, 2004, 8, 151-171.	1.7	91
13	Targeting procedures for energy savings by heat integration across plants. AICHE Journal, 1999, 45, 1721-1742.	1.8	87
14	On the state space approach to mass/heat exchanger network design**First presented in the 1990 Annual AIChE Meeting in Chicago, paper #22d Chemical Engineering Science, 1998, 53, 2595-2621.	1.9	76
15	Prediction of protein solubility in <i>Escherichia coli</i> using logistic regression. Biotechnology and Bioengineering, 2010, 105, 374-383.	1.7	76
16	A robust method to obtain optimal and sub-optimal design and retrofit solutions of water utilization systems with multiple contaminants in process plants. Computers and Chemical Engineering, 2000, 24, 1461-1466.	2.0	70
17	Energy savings in the total site heat integration across many plants. Computers and Chemical Engineering, 2000, 24, 1237-1242.	2.0	69
18	Gross error modeling and detection in plant linear dynamic reconciliation. Computers and Chemical Engineering, 1998, 22, 1789-1809.	2.0	62

#	Article	IF	CITATIONS
19	Financial risk management in the planning of refinery operations. International Journal of Production Economics, 2006, 103, 64-86.	5.1	61
20	On the role of microeconomics, planning, and finances in product design. AICHE Journal, 2007, 53, 3155-3170.	1.8	59
21	Rigorous Procedure for the Design of Conventional Atmospheric Crude Fractionation Units. Part I:Â Targeting. Industrial & Engineering Chemistry Research, 2001, 40, 617-626.	1.8	58
22	New rigorous one-step MILP formulation for heat exchanger network synthesis. Computers and Chemical Engineering, 2005, 29, 1945-1976.	2.0	58
23	Multiple plant heat integration in a total site. AICHE Journal, 2002, 48, 2255-2270.	1.8	52
24	On a New MILP Model for the Planning of Heat-Exchanger Network Cleaningâ€. Industrial & Engineering Chemistry Research, 2004, 43, 3924-3938.	1.8	52
25	New MILP formulation for instrumentation network design and upgrade. AICHE Journal, 2002, 48, 2271-2282.	1.8	48
26	A novel rolling horizon strategy for the strategic planning of supply chains. Application to the sugar cane industry of Argentina. Computers and Chemical Engineering, 2011, 35, 2540-2563.	2.0	48
27	Design and upgrade of nonredundant and redundant linear sensor networks. AICHE Journal, 1999, 45, 1927-1938.	1.8	47
28	A new approach for global optimization of a class of MINLP problems with applications to water management and pooling problems. AICHE Journal, 2012, 58, 2320-2335.	1.8	47
29	Integral approach to plant linear dynamic reconciliation. AICHE Journal, 1997, 43, 2546-2558.	1.8	46
30	New measures and procedures to manage financial risk with applications to the planning of gas commercialization in Asia. Computers and Chemical Engineering, 2004, 28, 2791-2821.	2.0	46
31	Cost-optimal design of reliable sensor networks. Computers and Chemical Engineering, 2000, 23, 1757-1762.	2.0	42
32	All-At-Once and Step-Wise Detailed Retrofit of Heat Exchanger Networks Using an MILP Model. Industrial & Engineering Chemistry Research, 2010, 49, 6080-6103.	1.8	42
33	Novel bound contraction procedure for global optimization of bilinear MINLP problems with applications to water management problems. Computers and Chemical Engineering, 2011, 35, 446-455.	2.0	42
34	Instrumentation network design and upgrade for process monitoring and fault detection. AICHE Journal, 2004, 50, 1870-1880.	1.8	41
35	Product design in priceâ€competitive markets: A case study of a skin moisturizing lotion. AICHE Journal, 2011, 57, 160-177.	1.8	41
36	Financial Risk Management in Offshore Oil Infrastructure Planning and Scheduling. Industrial & Engineering Chemistry Research, 2004, 43, 3063-3072.	1.8	37

#	Article	IF	CITATIONS
37	Simultaneous estimation of biases and leaks in process plants. Computers and Chemical Engineering, 1999, 23, 841-857.	2.0	35
38	Pareto Optimal Solutions Visualization Techniques for Multiobjective Design and Upgrade of Instrumentation Networks. Industrial & Engineering Chemistry Research, 2003, 42, 5195-5203.	1.8	35
39	Instrumentation design based on optimal Kalman filtering. Journal of Process Control, 2005, 15, 629-638.	1.7	34
40	Profit-based grassroots design and retrofit of water networks in process plants. Computers and Chemical Engineering, 2009, 33, 436-453.	2.0	33
41	Multipurpose Heat-Exchanger Networks for Heat Integration Across Plants. Industrial & Engineering Chemistry Research, 2001, 40, 5585-5603.	1.8	32
42	Data Reconciliation in Gas Pipeline Systems. Industrial & Engineering Chemistry Research, 2003, 42, 5596-5606.	1.8	32
43	Integrated Model for Refinery Planning, Oil Procuring, and Product Distribution. Industrial & Engineering Chemistry Research, 2009, 48, 463-482.	1.8	31
44	Financial Risk Management in the Design of Water Utilization Systems in Process Plants. Industrial & Engineering Chemistry Research, 2003, 42, 5249-5255.	1.8	29
45	Design of Crude Fractionation Units with Preflashing or Prefractionation:  Energy Targeting. Industrial & Engineering Chemistry Research, 2002, 41, 3003-3011.	1.8	28
46	Use of inventory and option contracts to hedge financial risk in planning under uncertainty. AICHE Journal, 2004, 50, 990-998.	1.8	28
47	Management of Pricing Policies and Financial Risk as a Key Element for Short Term Scheduling Optimization. Industrial & Engineering Chemistry Research, 2005, 44, 557-575.	1.8	28
48	Duality of sensor network design models for parameter estimation. AICHE Journal, 1999, 45, 661-664.	1.8	27
49	On the use of heat pumps in total site heat integration. Computers and Chemical Engineering, 2003, 27, 1707-1719.	2.0	27
50	Reallocation and upgrade of instrumentation in process plants. Computers and Chemical Engineering, 2000, 24, 1945-1959.	2.0	26
51	New Tool for the Evaluation of the Scheduling of Preventive Maintenance for Chemical Process Plants. Industrial & Engineering Chemistry Research, 2008, 47, 1910-1924.	1.8	26
52	Design of Nonlinear Sensor Networks for Process Plants. Industrial & Engineering Chemistry Research, 2008, 47, 5529-5542.	1.8	26
53	Global Optimization of Water Management Problems Using Linear Relaxation and Bound Contraction Methods. Industrial & Engineering Chemistry Research, 2011, 50, 3738-3753.	1.8	26
54	Computation of Natural Gas Pipeline Hydraulics. Industrial & Engineering Chemistry Research, 2014, 53, 10707-10720.	1.8	26

#	Article	IF	CITATIONS
55	Global Optimization of the Stage-wise Superstructure Model for Heat Exchanger Networks. Industrial & Engineering Chemistry Research, 2015, 54, 1595-1604.	1.8	26
56	Rigorous Procedure for the Design of Conventional Atmospheric Crude Fractionation Units. Part II:Â Heat Exchanger Network. Industrial & Engineering Chemistry Research, 2001, 40, 627-634.	1.8	25
57	<i>110th Anniversary</i> : On the Departure from Heuristics and Simplified Models toward Globally Optimal Design of Process Equipment. Industrial & Engineering Chemistry Research, 2019, 58, 18684-18702.	1.8	25
58	Instrumentation Design and Upgrade for Principal Components Analysis Monitoring. Industrial & Engineering Chemistry Research, 2004, 43, 2150-2159.	1.8	24
59	Financial Risk Management with Product Pricing in the Planning of Refinery Operations. Industrial & Engineering Chemistry Research, 2008, 47, 6622-6639.	1.8	24
60	ON A SYSTEMATIC DESIGN PROCEDURE FOR SINGLE COMPONENT WATER UTILIZATION SYSTEMS IN PROCESS PLANTS. Chemical Engineering Communications, 2001, 186, 183-203.	1.5	23
61	A review of techniques for instrumentation design and upgrade in process plants. Canadian Journal of Chemical Engineering, 2002, 80, 3-16.	0.9	23
62	On the Use of Net Present Value in Investment Capacity Planning Models. Industrial & Engineering Chemistry Research, 2008, 47, 9413-9416.	1.8	23
63	Alternative Mixed-Integer Linear Programming Formulations for Shell and Tube Heat Exchanger Optimal Design. Industrial & Engineering Chemistry Research, 2017, 56, 5970-5979.	1.8	22
64	Design of Crude Distillation Plants with Vacuum Units. I. Targeting. Industrial & Engineering Chemistry Research, 2002, 41, 6094-6099.	1.8	21
65	Optimization of Preventive Maintenance in Chemical Process Plants. Industrial & Engineering Chemistry Research, 2010, 49, 4329-4339.	1.8	21
66	Shell and tube heat exchanger design using mixedâ€integer linear programming. AICHE Journal, 2017, 63, 1907-1922.	1.8	21
67	Design of water utilization systems in process plants with a single contaminant. Waste Management, 2000, 20, 659-664.	3.7	20
68	Economic value of precision in the monitoring of linear systems. AICHE Journal, 2005, 51, 1304-1309.	1.8	20
69	Global Optimization of Heat Exchanger Networks. Part 1: Stages/Substages Superstructure. Industrial & Engineering Chemistry Research, 2017, 56, 5944-5957.	1.8	20
70	On a New MILP Model for the Planning of Heat-Exchanger Network Cleaning. Part III:Â Multiperiod Cleaning under Uncertainty with Financial Risk Management. Industrial & Engineering Chemistry Research, 2005, 44, 8136-8146.	1.8	19
71	Product Design:Â A Case Study of Slow-Release Carpet Deodorizers/Disinfectants. Industrial & Engineering Chemistry Research, 2008, 47, 1192-1200.	1.8	19
72	On the appropriate architecture of the water/wastewater allocation problem in process plants. Computer Aided Chemical Engineering, 2009, 26, 1-20.	0.3	19

#	Article	IF	CITATIONS
73	Global optimization of heat exchanger networks using a new generalized superstructure. Chemical Engineering Science, 2016, 147, 30-46.	1.9	19
74	Comparison of steady state and integral dynamic data reconciliation. Computers and Chemical Engineering, 2000, 24, 2367-2383.	2.0	18
75	Rigorous Methodology for the Design and Upgrade of Sensor Networks Using Cutsets. Industrial & Engineering Chemistry Research, 2006, 45, 6679-6686.	1.8	18
76	Financial risk management in the design of products under uncertainty. Computers and Chemical Engineering, 2009, 33, 1056-1066.	2.0	18
77	Linear method for the design of shell and tube heat exchangers including fouling modeling. Applied Thermal Engineering, 2017, 125, 1345-1353.	3.0	18
78	Hydrogen sulfide removal by supported vanadium oxide. Environmental Science & Technology, 1988, 22, 467-470.	4.6	17
79	On the definition of software accuracy in redundant measurement systems. AICHE Journal, 2005, 51, 1201-1206.	1.8	17
80	On the Degeneracy of the Water/Wastewater Allocation Problem in Process Plants. Industrial & Engineering Chemistry Research, 2010, 49, 4340-4351.	1.8	17
81	Efficient Procedure for the Design and Upgrade of Sensor Networks Using Cutsets and Rigorous Decomposition. Industrial & Engineering Chemistry Research, 2006, 45, 6687-6697.	1.8	16
82	Retrofit of Crude Units Preheating Trains: Mathematical Programming versus Pinch Technology. Industrial & Engineering Chemistry Research, 2013, 52, 14913-14926.	1.8	16
83	On the Impact of Corrective Maintenance in the Design of Sensor Networksâ€. Industrial & Engineering Chemistry Research, 2000, 39, 977-981.	1.8	15
84	Optimization of preventive maintenance scheduling in processing plants. Computer Aided Chemical Engineering, 2008, 25, 319-324.	0.3	15
85	Planning Model for the Design and/or Retrofit of Industrial Water Systems. Industrial & Engineering Chemistry Research, 2011, 50, 3788-3797.	1.8	15
86	On a Strategy of Serial Identification with Collective Compensation for Multiple Gross Error Estimation in Linear Steady-State Reconciliation. Industrial & Engineering Chemistry Research, 1999, 38, 2119-2128.	1.8	14
87	Stochastic-based accuracy of data reconciliation estimators for linear systems. Computers and Chemical Engineering, 2008, 32, 1257-1269.	2.0	14
88	New superstructure-based model for the globally optimal synthesis of refinery hydrogen networks. Journal of Cleaner Production, 2021, 292, 126022.	4.6	14
89	Energy savings horizons for the retrofit of chemical processes. Application to crude fractionation units. Computers and Chemical Engineering, 1998, 23, 1-9.	2.0	13
90	On the Performance of Principal Component Analysis in Multiple Gross Error Identification. Industrial & Engineering Chemistry Research, 1999, 38, 2005-2012.	1.8	13

#	Article	IF	CITATIONS
91	Financial Risk Management in the Planning of Energy Recovery in the Total Siteâ€. Industrial & Engineering Chemistry Research, 2003, 42, 5239-5248.	1.8	13
92	Design of medical diagnostics products: A case-study of a saliva diagnostics kit. Computers and Chemical Engineering, 2009, 33, 1067-1076.	2.0	13
93	Linear method for the design of shell and tube heat exchangers using the Bell–Delaware method. AICHE Journal, 2019, 65, e16602.	1.8	13
94	A new approach for the design of multicomponent water/wastewater networks. Computer Aided Chemical Engineering, 2008, 25, 43-48.	0.3	12
95	On the appropriate modeling of process plant water systems. AICHE Journal, 2010, 56, 668-689.	1.8	12
96	New efficient breadthâ€first/level traversal tree search method for the design and upgrade of sensor networks. AICHE Journal, 2011, 57, 1302-1309.	1.8	12
97	ON THE DESIGN FLEXIBILITY OF ATMOSPHERIC CRUDE FRACTIONATION UNITS. Chemical Engineering Communications, 1998, 166, 111-136.	1.5	11
98	On the use of heat belts for energy integration across many plants in the total site. Canadian Journal of Chemical Engineering, 2001, 79, 633-642.	0.9	11
99	Incorporating Fouling Modeling into Shell-and-Tube Heat Exchanger Design. Industrial & Engineering Chemistry Research, 2017, 56, 4377-4385.	1.8	11
100	Reverse Osmosis Network Rigorous Design Optimization. Industrial & Engineering Chemistry Research, 2019, 58, 3060-3071.	1.8	11
101	On the probability distribution and reconciliation of process plant data. Computers and Chemical Engineering, 1996, 20, 813-819.	2.0	10
102	Design of Crude Distillation Plants with Vacuum Units. II. Heat Exchanger Network Design. Industrial & Engineering Chemistry Research, 2002, 41, 6100-6106.	1.8	10
103	Financial Risk Management for Investment Planning of New Commodities Considering Plant Location and Budgeting. Industrial & Engineering Chemistry Research, 2006, 45, 7582-7591.	1.8	10
104	Value of accuracy in linear systems. AICHE Journal, 2006, 52, 638-650.	1.8	10
105	Globally optimal linear approach for the design of process equipment: The case of air coolers. AICHE Journal, 2018, 64, 886-903.	1.8	9
106	Globally optimal design of air coolers considering fan performance. Applied Thermal Engineering, 2019, 161, 114188.	3.0	9
107	Set Trimming Procedure for the Design Optimization of Shell and Tube Heat Exchangers. Industrial & Engineering Chemistry Research, 2020, 59, 14048-14054.	1.8	9
108	On the Energy Efficiency of Stripping-Type Crude Distillation. Industrial & Engineering Chemistry Research, 2002, 41, 5819-5825.	1.8	8

#	Article	IF	CITATIONS
109	Global optimization based on subspaces elimination: Applications to generalized pooling and water management problems. AICHE Journal, 2012, 58, 2336-2345.	1.8	8
110	Optimal Design of Double Pipe Heat Exchanger Structures. Industrial & Engineering Chemistry Research, 2019, 58, 12080-12096.	1.8	8
111	Globally optimal design of intensified shell and tube heat exchangers using complete set trimming. Computers and Chemical Engineering, 2022, 158, 107644.	2.0	8
112	Integrating pricing policies in the strategic planning of supply chains: A case study of the sugar cane industry in Argentina. Computer Aided Chemical Engineering, 2010, , 103-108.	0.3	7
113	New sensor network design and retrofit method based on value of information. AICHE Journal, 2011, 57, 2136-2148.	1.8	7
114	Globally optimal linear approach to the design of heat exchangers using threshold fouling modeling. AICHE Journal, 2018, 64, 2089-2102.	1.8	7
115	Globally optimal synthesis of heat exchanger networks. Part <scp>II</scp> : <scp>Nonâ€minimal</scp> networks. AICHE Journal, 2020, 66, e16264.	1.8	7
116	Global optimization of the design of horizontal shell and tube condensers. Chemical Engineering Science, 2021, 236, 116474.	1.9	7
117	Design of non-isothermal process water networks. Computer Aided Chemical Engineering, 2007, , 377-382.	0.3	6
118	On the impact of sensor maintenance policies on stochastic-based accuracy. Computers and Chemical Engineering, 2009, 33, 1491-1498.	2.0	6
119	Globally optimal synthesis of heat exchanger networks. Part I: Minimal networks. AICHE Journal, 2020, 66, e162667.	1.8	6
120	Computational Study of the Use of Set Trimming for the Globally Optimal Design of Gasketed-Plate Heat Exchangers. Industrial & Engineering Chemistry Research, 2021, 60, 1746-1755.	1.8	6
121	Globally optimal synthesis of heat exchanger networks. Part III: Nonâ€isothermal mixing in minimal and nonâ€minimal networks. AICHE Journal, 2021, 67, e17393.	1.8	6
122	REMOVING SINGULARITIES AND ASSESSING UNCERTAINTIES IN TWO EFFICIENT GROSS ERROR COLLECTIVE COMPENSATION METHODS. Chemical Engineering Communications, 2000, 178, 1-20.	1.5	5
123	Performance evaluation of PCA tests for multiple gross error identification. Computers and Chemical Engineering, 1999, 23, S589-S592.	2.0	4
124	A New MILP Formulation for Instrumentation Network Design and Upgrade. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 261-266.	0.4	4
125	ON THE APPLICATION OF A CONSUMER PREFERENCE-BASED METHOD FOR DESIGNING PRODUCTS TO WINE FERMENTATION MONITORING DEVICES. Chemical Engineering Communications, 2010, 198, 255-272.	1.5	4
126	Parallel computing approaches to sensor network design using the value paradigm. Computers and Chemical Engineering, 2011, 35, 1119-1134.	2.0	4

#	Article	IF	CITATIONS
127	On the Minimum Number of Units in Heat Exchanger Networks. Industrial & Engineering Chemistry Research, 2014, 53, 16899-16904.	1.8	4
128	Design Optimization of Double-Pipe Heat Exchangers Using a Discretized Model. Industrial & Engineering Chemistry Research, 2021, 60, 17611-17625.	1.8	4
129	A MIXED INTEGER LINEAR PROGRAMMING-BASED TECHNIQUE FOR THE ESTIMATION OF MULTIPLE GROSS ERRORS IN PROCESS MEASUREMENTS. Chemical Engineering Communications, 2000, 177, 139-155.	1.5	3
130	Integration of Process Systems Engineering and Business Decision Making Tools: Financial Risk Management and Other Emerging Procedures. , 2005, , 323-377.		3
131	Global Optimization of Heat Exchanger Networks. Part 2: Stages/Substages Superstructure with Variable <i>Cp</i> . Industrial & Engineering Chemistry Research, 2017, 56, 5958-5969.	1.8	3
132	PERFORMANCE EVALUATION OF PCA TESTS IN SERIAL ELIMINATION STRATEGIES FOR GROSS ERROR IDENTIFICATION. Chemical Engineering Communications, 2000, 183, 119-139.	1.5	2
133	Review of Recent Results in Instrumentation Design and Upgrade for Process Plants. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 227-232.	0.4	2
134	Managing financial risk in the planning of heat exchanger cleaning. Computer Aided Chemical Engineering, 2004, 18, 235-240.	0.3	2
135	COMPARATIVE ANALYSIS OF DIFFERENT ASSUMPTIONS FOR THE DESIGN OF SINGLE-CONTAMINANT WATER NETWORKS. Chemical Engineering Communications, 2010, 197, 859-880.	1.5	2
136	EFFICIENT APPROXIMATE METHODS FOR THE DESIGN AND UPGRADE OF SENSOR NETWORKS. Industrial & amp; Engineering Chemistry Research, 0, , 120411151511005.	1.8	2
137	Globally Optimal Design Optimization of Cooling Water Systems. Industrial & Engineering Chemistry Research, 2019, 58, 9473-9485.	1.8	2
138	Does Pressure-Retarded Osmosis Help Reverse Osmosis in Desalination?. Industrial & Engineering Chemistry Research, 2021, 60, 4366-4374.	1.8	2
139	Global Optimization of Counter Current Gasketed Plate Heat Exchanger. Computer Aided Chemical Engineering, 2019, 46, 259-264.	0.3	2
140	Global Optimization of Gasoline Blending Model using Bound Contraction Technique. Computer Aided Chemical Engineering, 2016, 38, 1293-1298.	0.3	2
141	An MILP Model for Cost Optimal Instrumentation Network Design and Upgrade for Fault Detection. IFAC Postprint Volumes IPPV / International Federation of Automatic Control, 2001, 34, 237-242.	0.4	1
142	Simultaneous treatment of environmental and financial risk in process design. International Journal of Environment and Pollution, 2007, 29, 30.	0.2	1
143	New method for sensor network design and upgrade for optimal process monitoring. Computer Aided Chemical Engineering, 2008, , 429-434.	0.3	1
144	Software Accuracy-Based Sensor Network Design and Upgrade in Process Plants. Industrial & Engineering Chemistry Research, 2011, 50, 4850-4857.	1.8	1

#	Article	IF	CITATIONS
145	Model Reformulation and Global Optimization of Oil Production Using Gas Lift. Industrial & Engineering Chemistry Research, 2016, 55, 10114-10120.	1.8	1
146	Challenges in Replacing Heuristics-Based Trialand-Error Procedures by Mathematical Optimization for Basic Equipment Design. Computer Aided Chemical Engineering, 2018, 44, 439-444.	0.3	1
147	Globally Optimal Design of Double Pipe Heat Exchangers using Local Properties and Discretized Models. Computer Aided Chemical Engineering, 2019, , 187-192.	0.3	1
148	Nonlinear Model for the Globally Optimal Design of Vertical Vapor Liquid Separation Vessels. Industrial & Engineering Chemistry Research, 2020, 59, 21155-21166.	1.8	1
149	Globally optimal design of kettle vaporizers. Thermal Science and Engineering Progress, 2021, 25, 100962.	1.3	1
150	MILP APPROACH FOR THE DESIGN OF VERTICAL VAPOR-LIQUID SEPARATION VESSELS- COMPARISON WITH HEURISTICS. Latin American Applied Research, 2020, 50, 65-70.	0.2	1
151	A microeconomics-based approach to product design under uncertainty. Computer Aided Chemical Engineering, 2008, , 181-186.	0.3	0
152	Performance Analysis of Absorption Chillers Using Data Reconciliation. , 2010, , .		0
153	Data Reconciliation and Software Methods for Bias Detection. , 2011, , 364-381.		0
154	Instrumentation in Processes and Automation. , 2011, , 72-89.		0
155	Heat Exchanger Design Optimization Considering Threshold Fouling Modelling. Computer Aided Chemical Engineering, 2017, 40, 799-804.	0.3	0
156	Financial Risk Management in Refinery Operations Planning. , 2013, , 631-645.		0
157	Design of shell and tube heat exchangers considering the interaction of fouling and hydraulics. AICHE Journal, 0, , .	1.8	0
158	Design of double pipe heat exchanger structures using linear models and smart enumeration. Brazilian Journal of Chemical Engineering, 0, , 1.	0.7	0