Gerardo Chowell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8231539/publications.pdf

Version: 2024-02-01

232 papers

16,111 citations

25034 57 h-index 24258 110 g-index

277 all docs

277 docs citations

times ranked

277

19601 citing authors

#	Article	IF	CITATIONS
1	The Nicaraguan Pediatric Influenza Cohort Study, 2011–2019: Influenza Incidence, Seasonality, and Transmission. Clinical Infectious Diseases, 2023, 76, e1094-e1103.	5.8	5
2	SARS-CoV-2 Transmission in Alberta, British Columbia, and Ontario, Canada, December 25, 2019, to December 1, 2020. Disaster Medicine and Public Health Preparedness, 2022, 16, 2428-2437.	1.3	7
3	Spatially refined time-varying reproduction numbers of SARS-CoV-2 in Arkansas and Kentucky and their relationship to population size and public health policy, March – November 2020. Annals of Epidemiology, 2022, 68, 37-44.	1.9	7
4	The doubling time analysis for modified infectious disease Richards model with applications to COVID-19 pandemic. Mathematical Biosciences and Engineering, 2022, 19, 3242-3268.	1.9	5
5	An investigation of spatial-temporal patterns and predictions of the coronavirus 2019 pandemic in Colombia, 2020–2021. PLoS Neglected Tropical Diseases, 2022, 16, e0010228.	3.0	8
6	Monitoring Different Social Media Platforms to Report Unplanned School Closures Due to Wildfires in California, October and December 2017. Disaster Medicine and Public Health Preparedness, 2022, , 1-7.	1.3	0
7	SARS-CoV-2 transmission potential and rural-urban disease burden disparities across Alabama, Louisiana, and Mississippi, March 2020 — May 2021. Annals of Epidemiology, 2022, 71, 1-8.	1.9	3
8	Parameter identifiability and optimal control of an SARS-CoV-2 model early in the pandemic. Journal of Biological Dynamics, 2022, 16, 412-438.	1.7	12
9	Systematic comparison of epidemic growth patterns using two different estimation approaches. Infectious Disease Modelling, 2021, 6, 5-14.	1.9	1
10	Spatial variability in reproduction number and doubling time across two waves of the COVID-19 pandemic in South Korea, February to July, 2020. International Journal of Infectious Diseases, 2021, 102, 1-9.	3.3	23
11	Understanding the role of urban design in disease spreading. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477, .	2.1	9
12	Transmission dynamics and control of COVID-19 in Chile, March-October, 2020. PLoS Neglected Tropical Diseases, 2021, 15, e0009070.	3.0	35
13	Social inequality and the syndemic of chronic disease and COVID-19: county-level analysis in the USA. Journal of Epidemiology and Community Health, 2021, 75, 496-500.	3.7	76
14	Ensemble bootstrap methodology for forecasting dynamic growth processes using differential equations: application to epidemic outbreaks. BMC Medical Research Methodology, 2021, 21, 34.	3.1	16
15	COVID-19 case fatality risk by age and gender in a high testing setting in Latin America: Chile, March–August 2020. Infectious Diseases of Poverty, 2021, 10, 11.	3.7	74
16	Assessing Early Heterogeneity in Doubling Times of the COVID-19 Epidemic across Prefectures in Mainland China, January–February, 2020. Epidemiologia, 2021, 2, 95-113.	2.2	10
17	Mathematical and Statistical Analysis of Doubling Times to Investigate the Early Spread of Epidemics: Application to the COVID-19 Pandemic. Mathematics, 2021, 9, 625.	2.2	8
18	Dynamic prioritization of COVID-19 vaccines when social distancing is limited for essential workers. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	149

#	Article	IF	Citations
19	Measuring differences between phenomenological growth models applied to epidemiology. Mathematical Biosciences, 2021, 334, 108558.	1.9	8
20	Spatially Refined Time-Varying Reproduction Numbers of COVID-19 by Health District in Georgia, USA, March–December 2020. Epidemiologia, 2021, 2, 179-197.	2.2	7
21	Characterizing all-cause excess mortality patterns during COVID-19 pandemic in Mexico. BMC Infectious Diseases, 2021, 21, 432.	2.9	32
22	Mask-Ematics: Modeling the Effects of Masks in COVID-19 Transmission in High-Risk Environments. Epidemiologia, 2021, 2, 207-226.	2.2	2
23	A review and agenda for integrated disease models including social and behavioural factors. Nature Human Behaviour, 2021, 5, 834-846.	12.0	71
24	Transmission dynamics and forecasts of the COVID-19 pandemic in Mexico, March-December 2020. PLoS ONE, 2021, 16, e0254826.	2.5	11
25	Harnessing testing strategies and public health measures to avert COVID-19 outbreaks during ocean cruises. Scientific Reports, 2021, 11, 15482.	3.3	4
26	A Large-Scale COVID-19 Twitter Chatter Dataset for Open Scientific Researchâ€"An International Collaboration. Epidemiologia, 2021, 2, 315-324.	2.2	163
27	Investigating the first stage of the COVID-19 pandemic in Ukraine using epidemiological and genomic data. Infection, Genetics and Evolution, 2021, 95, 105087.	2.3	10
28	Geospatial Variability in Excess Death Rates during the COVID-19 Pandemic in Mexico: Examining Socio Demographic, Climate and Population Health Characteristics. International Journal of Infectious Diseases, 2021, 113, 347-354.	3.3	15
29	Transmission Dynamics and Short-Term Forecasts of COVID-19: Nepal 2020/2021. Epidemiologia, 2021, 2, 639-659.	2.2	8
30	Time-varying Reproduction Numbers of COVID-19 in Georgia, USA, March 2, 2020 to November 20, 2020. , 2021, 25, 1-1.		3
31	Susceptibility to organophosphates pesticides and the development of infectious-contagious respiratory diseases. Journal of Theoretical Biology, 2020, 488, 110133.	1.7	7
32	Mechanistic modelling of multiple waves in an influenza epidemic or pandemic. Journal of Theoretical Biology, 2020, 486, 110070.	1.7	7
33	Doubling Time of the COVID-19 Epidemic by Province, China. Emerging Infectious Diseases, 2020, 26, 1912-1914.	4.3	76
34	Physical distancing interventions and incidence of coronavirus disease 2019: natural experiment in 149 countries. BMJ, The, 2020, 370, m2743.	6.0	427
35	Spatial dynamics and the basic reproduction number of the 1991–1997 Cholera epidemic in Peru. PLoS Neglected Tropical Diseases, 2020, 14, e0008045.	3.0	9
36	Early epidemiological assessment of the transmission potential and virulence of coronavirus disease 2019 (COVID-19) in Wuhan City, China, January–February, 2020. BMC Medicine, 2020, 18, 217.	5 . 5	55

#	Article	IF	Citations
37	Stillbirth Risk during the 1918 Influenza Pandemic in Arizona, USA. Epidemiologia, 2020, 1, 23-30.	2.2	1
38	Severe Acute Respiratory Syndrome Coronavirus 2 Transmission Potential, Iran, 2020. Emerging Infectious Diseases, 2020, 26, 1915-1917.	4.3	39
39	Multi-model forecasts of the ongoing Ebola epidemic in the Democratic Republic of Congo, March–October 2019. Journal of the Royal Society Interface, 2020, 17, 20200447.	3.4	16
40	A dynamic modeling tool for estimating healthcare demand from the COVID19 epidemic and evaluating population-wide interventions. International Journal of Infectious Diseases, 2020, 96, 376-383.	3.3	48
41	Estimating Risk for Death from Coronavirus Disease, China, January–February 2020. Emerging Infectious Diseases, 2020, 26, 1251-1256.	4.3	166
42	Early transmission dynamics of COVID-19 in a southern hemisphere setting: Lima-Peru: February 29th–March 30th, 2020. Infectious Disease Modelling, 2020, 5, 338-345.	1.9	55
43	Using Twitter to Track Unplanned School Closures: Georgia Public Schools, 2015-17. Disaster Medicine and Public Health Preparedness, 2020, , 1-5.	1.3	6
44	Real-time monitoring the transmission potential of COVID-19 in Singapore, March 2020. BMC Medicine, 2020, 18, 166.	5.5	82
45	Effect of a wet market on coronavirus disease (COVID-19) transmission dynamics in China, 2019–2020. International Journal of Infectious Diseases, 2020, 97, 96-101.	3.3	34
46	Estimating the Risk of COVID-19 Death during the Course of the Outbreak in Korea, February–May 2020. Journal of Clinical Medicine, 2020, 9, 1641.	2.4	31
47	Transmission potential and severity of COVID-19 in South Korea. International Journal of Infectious Diseases, 2020, 93, 339-344.	3.3	561
48	Social Media Use in Emergency Response to Natural Disasters: A Systematic Review With a Public Health Perspective. Disaster Medicine and Public Health Preparedness, 2020, 14, 139-149.	1.3	43
49	Getting to zero in the DR Congo Ebola outbreak. Lancet Infectious Diseases, The, 2020, 20, 395-397.	9.1	1
50	Short-term Forecasts of the COVID-19 Epidemic in Guangdong and Zhejiang, China: February 13–23, 2020. Journal of Clinical Medicine, 2020, 9, 596.	2.4	174
51	Mechanistic modelling of the large-scale Lassa fever epidemics in Nigeria from 2016 to 2019. Journal of Theoretical Biology, 2020, 493, 110209.	1.7	44
52	Transmission potential of the novel coronavirus (COVID-19) onboard the diamond Princess Cruises Ship, 2020. Infectious Disease Modelling, 2020, 5, 264-270.	1.9	222
53	The COVID-19 pandemic in the USA: what might we expect?. Lancet, The, 2020, 395, 1093-1094.	13.7	96
54	Changes in testing rates could mask the novel coronavirus disease (COVID-19) growth rate. International Journal of Infectious Diseases, 2020, 94, 116-118.	3.3	112

#	Article	IF	CITATIONS
55	Risk of death by age and gender from CoVID-19 in Peru, March-May, 2020. Aging, 2020, 12, 13869-13881.	3.1	52
56	Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance, 2020, 25, .	7.0	1,890
57	Temporary Fertility Decline after Large Rubella Outbreak, Japan. Emerging Infectious Diseases, 2020, 26, 1122-1129.	4.3	11
58	Using Simple Dynamic Analytic Framework To Characterize And Forecast Epidemics., 2020,,.		1
59	Pesticide application, educational treatment and infectious respiratory diseases: A mechanistic model with two impulsive controls. PLoS ONE, 2020, 15, e0243048.	2.5	2
60	On Stable Parameter Estimation and Forecasting in Epidemiology by the Levenberg–Marquardt Algorithm with Broyden's Rank-one Updates for the Jacobian Operator. Bulletin of Mathematical Biology, 2019, 81, 4210-4232.	1.9	5
61	Evaluating the potential impact of targeted vaccination strategies against severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV) outbreaks in the healthcare setting. Theoretical Biology and Medical Modelling, 2019, 16, 16.	2.1	23
62	A novel sub-epidemic modeling framework for short-term forecasting epidemic waves. BMC Medicine, 2019, 17, 164.	5 . 5	110
63	Assessing parameter identifiability in compartmental dynamic models using a computational approach: application to infectious disease transmission models. Theoretical Biology and Medical Modelling, 2019, 16, 1.	2.1	104
64	Prior dengue virus infection and risk of Zika: A pediatric cohort in Nicaragua. PLoS Medicine, 2019, 16, e1002726.	8.4	130
65	Assessing the potential impact of vector-borne disease transmission following heavy rainfall events: a mathematical framework. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20180272.	4.0	20
66	A maximum curvature method for estimating epidemic onset of seasonal influenza in Japan. BMC Infectious Diseases, 2019, 19, 181.	2.9	5
67	Vaccination strategies to control Ebola epidemics in the context of variable household inaccessibility levels. PLoS Neglected Tropical Diseases, 2019, 13, e0007814.	3.0	15
68	Assessing the relationship between epidemic growth scaling and epidemic size: The 2014–16 Ebola epidemic in West Africa. Epidemiology and Infection, 2019, 147, e27.	2.1	7
69	Fogarty International Center collaborative networks in infectious disease modeling: Lessons learnt in research and capacity building. Epidemics, 2019, 26, 116-127.	3.0	16
70	Forecasting Epidemics Through Nonparametric Estimation of Time-Dependent Transmission Rates Using the SEIR Model. Bulletin of Mathematical Biology, 2019, 81, 4343-4365.	1.9	45
71	Quantitative Methods for Investigating Infectious Disease Outbreaks. Texts in Applied Mathematics, 2019, , .	0.4	48
72	Spatial variability in the reproduction number of Ebola virus disease, Democratic Republic of the Congo, January–September 2019. Eurosurveillance, 2019, 24, .	7.0	10

#	Article	IF	Citations
73	Comparative analysis of phenomenological growth models applied to epidemic outbreaks. Mathematical Biosciences and Engineering, 2019, 16, 4250-4273.	1.9	39
74	Comparative assessment of parameter estimation methods in the presence of overdispersion: a simulation study. Mathematical Biosciences and Engineering, 2019, 16, 4299-4313.	1.9	22
75	Behaviors of a Disease Outbreak During the Initial Phase and the Branching Process Approximation. Texts in Applied Mathematics, 2019, , 79-133.	0.4	O
76	Mechanistic Models with Spatial Structures and Reactive Behavior Change. Texts in Applied Mathematics, 2019, , 317-334.	0.4	1
77	A review of the 1918 herald pandemic wave: importance for contemporary pandemic response strategies. Annals of Epidemiology, 2018, 28, 281-288.	1.9	57
78	Urbanization prolongs hantavirus epidemics in cities. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4707-4712.	7.1	72
79	Forecasting the 2001 Foot-and-Mouth Disease Epidemic in the UK. EcoHealth, 2018, 15, 338-347.	2.0	46
80	Simple multi-scale modeling of the transmission dynamics of the 1905 plague epidemic in Bombay. Mathematical Biosciences, 2018, 301, 83-92.	1.9	4
81	Infectious disease risks among refugees from North Korea. International Journal of Infectious Diseases, 2018, 66, 22-25.	3.3	8
82	Excess mortality patterns during 1918–1921 influenza pandemic in the state of Arizona, USA. Annals of Epidemiology, 2018, 28, 273-280.	1.9	29
83	Age-specific excess mortality patterns and transmissibility during the 1889–1890 influenza pandemic in Madrid, Spain. Annals of Epidemiology, 2018, 28, 267-272.	1.9	17
84	We could learn much more from 1918 pandemicâ€"the (mis)fortune of research relying on original death certificates. Annals of Epidemiology, 2018, 28, 289-292.	1.9	3
85	Differences in Transmission and Disease Severity Between 2 Successive Waves of Chikungunya. Clinical Infectious Diseases, 2018, 67, 1760-1767.	5.8	29
86	Introduction to symposium: a century after the 1918 influenza pandemic. Annals of Epidemiology, 2018, 28, 265-266.	1.9	5
87	The RAPIDD ebola forecasting challenge: Synthesis and lessons learnt. Epidemics, 2018, 22, 13-21.	3.0	185
88	Using phenomenological models for forecasting the 2015 Ebola challenge. Epidemics, 2018, 22, 62-70.	3.0	129
89	The RAPIDD Ebola forecasting challenge: Model description and synthetic data generation. Epidemics, 2018, 22, 3-12.	3.0	19
90	The RAPIDD Ebola forecasting challenge special issue: Preface. Epidemics, 2018, 22, 1-2.	3.0	7

#	Article	IF	CITATIONS
91	Natality Decline and Spatial Variation in Excess Death Rates During the 1918–1920 Influenza Pandemic in Arizona, United States. American Journal of Epidemiology, 2018, 187, 2577-2584.	3.4	22
92	Assessing inference of the basic reproduction number in an SIR model incorporating a growthâ€scaling parameter. Statistics in Medicine, 2018, 37, 4490-4506.	1.6	8
93	Age-Specific Excess Mortality Patterns During the 1918–1920 Influenza Pandemic in Madrid, Spain. American Journal of Epidemiology, 2018, 187, 2511-2523.	3.4	24
94	Transmission potential of modified measles during an outbreak, Japan, Marchâ€'May 2018. Eurosurveillance, 2018, 23, .	7.0	33
95	Perspectives on model forecasts of the 2014–2015 Ebola epidemic in West Africa: lessons and the way forward. BMC Medicine, 2017, 15, 42.	5.5	63
96	Severe mortality impact of the 1957 influenza pandemic in Chile. Influenza and Other Respiratory Viruses, 2017, 11, 230-239.	3.4	7
97	Quantifying the fitness of antiviral-resistant influenza strains. Lancet Infectious Diseases, The, 2017, 17, 250-251.	9.1	0
98	Fitting dynamic models to epidemic outbreaks with quantified uncertainty: A primer for parameter uncertainty, identifiability, and forecasts. Infectious Disease Modelling, 2017, 2, 379-398.	1.9	273
99	A primer on stable parameter estimation and forecasting in epidemiology by a problem-oriented regularized least squares algorithm. Infectious Disease Modelling, 2017, 2, 268-275.	1.9	18
100	Asymptomatic Transmission and the Dynamics of Zika Infection. Scientific Reports, 2017, 7, 5829.	3.3	47
101	Exploring optimal control strategies in seasonally varying flu-like epidemics. Journal of Theoretical Biology, 2017, 412, 36-47.	1.7	28
102	Numerical solution of a spatio-temporal gender-structured model for hantavirus infection in rodents. Mathematical Biosciences and Engineering, 2017, 15, 95-123.	1.9	13
103	Severe Fever with Thrombocytopenia Syndrome Virus in Humans, Domesticated Animals, Ticks, and Mosquitoes, Shaanxi Province, China. American Journal of Tropical Medicine and Hygiene, 2017, 96, 1346-1349.	1.4	30
104	Multiple Trigger Points for Quantifying Heat-Health Impacts: New Evidence from a Hot Climate. Environmental Health Perspectives, 2016, 124, 176-183.	6.0	77
105	Predicting the international spread of Middle East respiratory syndrome (MERS). BMC Infectious Diseases, 2016, 16, 356.	2.9	38
106	Model estimates of the burden of outpatient visits attributable to influenza in the United States. BMC Infectious Diseases, 2016, 16, 641.	2.9	26
107	Prevention and Control of Zika as a Mosquito-Borne and Sexually Transmitted Disease: A Mathematical Modeling Analysis. Scientific Reports, 2016, 6, 28070.	3.3	250
108	A generalized-growth model to characterize the early ascending phase of infectious disease outbreaks. Epidemics, 2016, 15, 27-37.	3.0	237

#	Article	IF	Citations
109	Is it growing exponentially fast? – Impact of assuming exponential growth for characterizing and forecasting epidemics with initial near-exponential growth dynamics. Infectious Disease Modelling, 2016, 1, 71-78.	1.9	29
110	A dynamic compartmental model for the Middle East respiratory syndrome outbreak in the Republic of Korea: A retrospective analysis on control interventions and superspreading events. Journal of Theoretical Biology, 2016, 408, 118-126.	1.7	82
111	Pandemic influenza and socioeconomic disparities: Lessons from 1918 Chicago. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 13557-13559.	7.1	16
112	epiDMS: Data Management and Analytics for Decision-Making From Epidemic Spread Simulation Ensembles. Journal of Infectious Diseases, 2016, 214, S427-S432.	4.0	20
113	Early sub-exponential epidemic growth: Simple models, nonlinear incidence rates, and additional mechanisms. Physics of Life Reviews, 2016, 18, 114-117.	2.8	2
114	Mathematical models to characterize early epidemic growth: A review. Physics of Life Reviews, 2016, 18, 66-97.	2.8	297
115	Modeling Ring-Vaccination Strategies to Control Ebola Virus Disease Epidemics. , 2016, , 71-87.		6
116	Elucidating Transmission Patterns From Internet Reports: Ebola and Middle East Respiratory Syndrome as Case Studies. Journal of Infectious Diseases, 2016, 214, S421-S426.	4.0	20
117	Characterizing the reproduction number of epidemics with early subexponential growth dynamics. Journal of the Royal Society Interface, 2016, 13, 20160659.	3.4	101
118	Identifying determinants of heterogeneous transmission dynamics of the Middle East respiratory syndrome (MERS) outbreak in the Republic of Korea, 2015: a retrospective epidemiological analysis. BMJ Open, 2016, 6, e009936.	1.9	37
119	Mortality and transmissibility patterns of the 1957 influenza pandemic in Maricopa County, Arizona. BMC Infectious Diseases, 2016, 16, 405.	2.9	14
120	Estimating the subcritical transmissibility of the Zika outbreak in the State of Florida, USA, 2016. Theoretical Biology and Medical Modelling, 2016, 13, 20.	2.1	36
121	Null models for community detection in spatially embedded, temporal networks. Journal of Complex Networks, 2016, 4, 363-406.	1.8	56
122	Global Mortality Impact of the 1957–1959 Influenza Pandemic. Journal of Infectious Diseases, 2016, 213, 738-745.	4.0	166
123	Modeling household and community transmission of Ebola virus disease: Epidemic growth, spatial dynamics and insights for epidemic control. Virulence, 2016, 7, 163-173.	4.4	35
124	Characterizing Ebola Transmission Patterns Based on Internet News Reports. Clinical Infectious Diseases, 2016, 62, 24-31.	5.8	40
125	Using Phenomenological Models to Characterize Transmissibility and Forecast Patterns and Final Burden of Zika Epidemics. PLOS Currents, 2016, 8, .	1.4	123
126	Modelling the spatial-temporal progression of the 2009 A/H1N1 influenza pandemic in Chile. Mathematical Biosciences and Engineering, 2016, 13 , 43 - 65 .	1.9	10

#	Article	IF	CITATIONS
127	Evaluating the Number of Sickbeds During Ebola Epidemics Using Optimal Control Theory. , 2016, , 89-101.		1
128	Transmission characteristics of MERS and SARS in the healthcare setting: a comparative study. BMC Medicine, 2015, 13, 210.	5.5	384
129	Real-time characterization of risks of death associated with the Middle East respiratory syndrome (MERS) in the Republic of Korea, 2015. BMC Medicine, 2015, 13, 228.	5.5	37
130	Theoretical perspectives on the infectiousness of Ebola virus disease. Theoretical Biology and Medical Modelling, 2015, 12, 1.	2.1	25
131	Impact of School Cycles and Environmental Forcing on the Timing of Pandemic Influenza Activity in Mexican States, May-December 2009. PLoS Computational Biology, 2015, 11, e1004337.	3.2	20
132	Accounting for behavioral responses during a flu epidemic using home television viewing. BMC Infectious Diseases, 2015, 15, 21.	2.9	43
133	Estimating the risk of Middle East respiratory syndrome (MERS) death during the course of the outbreak in the Republic of Korea, 2015. International Journal of Infectious Diseases, 2015, 39, 7-9.	3.3	42
134	Controlling Ebola: key role of Ebola treatment centres. Lancet Infectious Diseases, The, 2015, 15, 139-141.	9.1	7
135	Ebola vaccine trials: a race against the clock. Lancet Infectious Diseases, The, 2015, 15, 624-626.	9.1	9
136	Characterizing the Transmission Dynamics and Control of Ebola Virus Disease. PLoS Biology, 2015, 13, e1002057.	5.6	35
137	Intense Seasonal A/H1N1 Influenza in Mexico, Winter 2013–2014. Archives of Medical Research, 2015, 46, 63-70.	3.3	14
138	The first human infection with severe fever with thrombocytopenia syndrome virus in Shaanxi Province, China. International Journal of Infectious Diseases, 2015, 35, 37-39.	3.3	17
139	Ebola control: rapid diagnostic testing. Lancet Infectious Diseases, The, 2015, 15, 147-148.	9.1	38
140	The Western Africa Ebola Virus Disease Epidemic Exhibits Both Global Exponential and Local Polynomial Growth Rates. PLOS Currents, 2015, 7, .	1.4	84
141	Time-Specific Ecologic Niche Models Forecast the Risk of Hemorrhagic Fever with Renal Syndrome in Dongting Lake District, China, 2005–2010. PLoS ONE, 2014, 9, e106839.	2.5	15
142	Heat-Related Deaths in Hot Cities: Estimates of Human Tolerance to High Temperature Thresholds. International Journal of Environmental Research and Public Health, 2014, 11, 3304-3326.	2.6	92
143	Rates of Influenza-like Illness and Winter School Breaks, Chile, 2004–2010. Emerging Infectious Diseases, 2014, 20, 1203-7.	4.3	9
144	Synthesizing data and models for the spread of MERS-CoV, 2013: Key role of index cases and hospital transmission. Epidemics, 2014, 9, 40-51.	3.0	110

#	Article	IF	Citations
145	Transmission dynamics and control of Ebola virus disease (EVD): a review. BMC Medicine, 2014, 12, 196.	5. 5	300
146	Death Patterns during the 1918 Influenza Pandemic in Chile. Emerging Infectious Diseases, 2014, 20, 1803-1811.	4.3	40
147	Merging Economics and Epidemiology to Improve the Prediction and Management of Infectious Disease. EcoHealth, 2014, 11, 464-475.	2.0	87
148	Assessing the impact of public health interventions on the transmission of pandemic <scp>H</scp> 1 <scp>N</scp> 1 influenza a virus aboard a Peruvian navy ship. Influenza and Other Respiratory Viruses, 2014, 8, 353-359.	3.4	13
149	Urban structure and the risk of influenza A (H1N1) outbreaks in municipal districts. Science Bulletin, 2014, 59, 554-562.	1.7	10
150	Spatial-temporal excess mortality patterns of the $1918\hat{a}\in 1919$ influenza pandemic in Spain. BMC Infectious Diseases, 2014, 14, 371.	2.9	41
151	Substantial Morbidity and Mortality Associated with Pandemic A/H1N1 Influenza in Mexico, Winter 2013-2014: Gradual Age Shift and Severity. PLOS Currents, 2014, 6, .	1.4	27
152	Is West Africa Approaching a Catastrophic Phase or is the 2014 Ebola Epidemic Slowing Down? Different Models Yield Different Answers for Liberia. PLOS Currents, 2014, 6, .	1.4	62
153	A practical method to target individuals for outbreak detection and control. BMC Medicine, 2013, 11, 36.	5.5	6
154	Transmission potential of influenza A/H7N9, February to May 2013, China. BMC Medicine, 2013, 11, 214.	5.5	44
155	The basic reproduction number \$R_0\$ and effectiveness of reactive interventions during dengue epidemics: The 2002 dengue outbreak in Easter Island, Chile. Mathematical Biosciences and Engineering, 2013, 10, 1455-1474.	1.9	26
156	A Data-Driven Mathematical Model of CA-MRSA Transmission among Age Groups: Evaluating the Effect of Control Interventions. PLoS Computational Biology, 2013, 9, e1003328.	3.2	21
157	Commentary. Epidemiology, 2013, 24, 842-844.	2.7	3
158	Skip the Trip: Air Travelers' Behavioral Responses to Pandemic Influenza. PLoS ONE, 2013, 8, e58249.	2.5	102
159	A Population Based Study of Seasonality of Skin and Soft Tissue Infections: Implications for the Spread of CA-MRSA. PLoS ONE, 2013, 8, e60872.	2.5	47
160	Climate change and influenza: the likelihood of early and severe influenza seasons following warmer than average winters. PLOS Currents, $2013, 5, .$	1.4	31
161	Epidemiological Characterization of a Fourth Wave of Pandemic A/H1N1 Influenza in Mexico, Winter 2011–2012: Age Shift and Severity. Archives of Medical Research, 2012, 43, 563-570.	3.3	34
162	The influence of climatic conditions on the transmission dynamics of the 2009 A/H1N1 influenza pandemic in Chile. BMC Infectious Diseases, 2012, 12, 298.	2.9	47

#	Article	IF	Citations
163	Impact of weekday social contact patterns on the modeling of influenza transmission, and determination of the influenza latent period. Journal of Theoretical Biology, 2012, 312, 87-95.	1.7	20
164	Impact of antiviral treatment and hospital admission delay on risk of death associated with 2009 A/H1N1 pandemic influenza in Mexico. BMC Infectious Diseases, 2012, 12, 97.	2.9	22
165	Toward unbiased assessment of treatment and prevention: modeling household transmission of pandemic influenza. BMC Medicine, 2012, 10, 118.	5.5	2
166	Modeling rapidly disseminating infectious disease during mass gatherings. BMC Medicine, 2012, 10, 159.	5.5	25
167	The age distribution of mortality due to influenza: pandemic and peri-pandemic. BMC Medicine, 2012, 10, 162.	5.5	30
168	Epidemiological Characteristics and Underlying Risk Factors for Mortality during the Autumn 2009 Pandemic Wave in Mexico. PLoS ONE, 2012, 7, e41069.	2.5	32
169	The 1918–19 Influenza Pandemic in Boyacá, Colombia. Emerging Infectious Diseases, 2012, 18, 48-56.	4.3	31
170	Modeling Optimal Age-Specific Vaccination Strategies Against Pandemic Influenza. Bulletin of Mathematical Biology, 2012, 74, 958-980.	1.9	75
171	Scales of perception: public awareness of regional and neighborhood climates. Climatic Change, 2012, 111, 581-607.	3.6	54
172	Recrudescent wave of pandemic A/H1N1 influenza in Mexico, winter 2011-2012: Age shift and severity. PLOS Currents, 2012, 4, RRN1306.	1.4	21
173	The need for interdisciplinary studies of historic pandemics. Vaccine, 2011, 29, B1-B5.	3.8	14
174	Influenza and Pneumonia Mortality in 66 Large Cities in the United States in Years Surrounding the 1918 Pandemic. PLoS ONE, 2011, 6, e23467.	2.5	28
175	The influence of geographic and climate factors on the timing of dengue epidemics in Per \tilde{A}^{o} , 1994-2008. BMC Infectious Diseases, 2011, 11, 164.	2.9	70
176	Measuring the benefits of school closure interventions to mitigate influenza. Expert Review of Respiratory Medicine, 2011, 5, 597-599.	2.5	7
177	Rubella metapopulation dynamics and importance of spatial coupling to the risk of congenital rubella syndrome in Peru. Journal of the Royal Society Interface, 2011, 8, 369-376.	3.4	52
178	Mortality Burden of the A/H1N1 Pandemic in Mexico: A Comparison of Deaths and Years of Life Lost to Seasonal Influenza. Clinical Infectious Diseases, 2011, 53, 985-993.	5.8	95
179	A DETERMINISTIC METHODOLOGY FOR ESTIMATION OF PARAMETERS IN DYNAMIC MARKOV CHAIN MODELS. Journal of Biological Systems, 2011, 19, 71-100.	1.4	11
180	Adaptive human behavior in epidemiological models. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 6306-6311.	7.1	351

#	Article	IF	Citations
181	Characterizing the Epidemiology of the 2009 Influenza A/H1N1 Pandemic in Mexico. PLoS Medicine, 2011, 8, e1000436.	8.4	200
182	Did Modeling Overestimate the Transmission Potential of Pandemic (H1N1-2009)? Sample Size Estimation for Post-Epidemic Seroepidemiological Studies. PLoS ONE, 2011, 6, e17908.	2.5	27
183	Spatial and Temporal Characteristics of the 2009 A/H1N1 Influenza Pandemic in Peru. PLoS ONE, 2011, 6, e21287.	2.5	43
184	Influenza-Related Mortality Trends in Japanese and American Seniors: Evidence for the Indirect Mortality Benefits of Vaccinating Schoolchildren. PLoS ONE, 2011, 6, e26282.	2.5	48
185	A perspective on the 2009 A/H1N1 influenza pandemic in Mexico. Mathematical Biosciences and Engineering, 2011, 8, 223-238.	1.9	3
186	Lessons from Nigeria: the role of roads in the geo-temporal progression of avian influenza (H5N1) virus. Epidemiology and Infection, 2010, 138, 192-198.	2.1	38
187	Transmission dynamics and underreporting of Kala-azar in the Indian state of Bihar. Journal of Theoretical Biology, 2010, 262, 177-185.	1.7	57
188	Optimal control for pandemic influenza: The role of limited antiviral treatment and isolation. Journal of Theoretical Biology, 2010, 265, 136-150.	1.7	102
189	Does Glycosylation as a modifier of Original Antigenic Sin explain the case age distribution and unusual toxicity in pandemic novel H1N1 influenza?. BMC Infectious Diseases, 2010, 10, 5.	2.9	74
190	Pros and cons of estimating the reproduction number from early epidemic growth rate of influenza A $(H1N1)\ 2009$. Theoretical Biology and Medical Modelling, 2010, 7, 1.	2.1	171
191	Mortality Patterns Associated with the 1918 Influenza Pandemic in Mexico: Evidence for a Spring Herald Wave and Lack of Preexisting Immunity in Older Populations. Journal of Infectious Diseases, 2010, 202, 567-575.	4.0	71
192	The ideal reporting interval for an epidemic to objectively interpret the epidemiological time course. Journal of the Royal Society Interface, 2010, 7, 297-307.	3.4	53
193	A discrete events delay differential system model for transmission of Vancomycin-resistant enterococcus (VRE) in hospitals. Journal of Inverse and Ill-Posed Problems, 2010, 18, 787-821.	1.0	2
194	The reproduction number of seasonal influenza epidemics in Brazil, 1996–2006. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 1857-1866.	2.6	40
195	Changes in the Viral Distribution Pattern after the Appearance of the Novel Influenza A H1N1 (pH1N1) Virus in Influenza-Like Illness Patients in Peru. PLoS ONE, 2010, 5, e11719.	2.5	19
196	Adaptive Vaccination Strategies to Mitigate Pandemic Influenza: Mexico as a Case Study. PLoS ONE, 2009, 4, e8164.	2.5	60
197	Severe Respiratory Disease Concurrent with the Circulation of H1N1 Influenza. New England Journal of Medicine, 2009, 361, 674-679.	27.0	631
198	Qualitative analysis of the level of cross-protection between epidemic waves of the 1918–1919 influenza pandemic. Journal of Theoretical Biology, 2009, 261, 584-592.	1.7	43

#	Article	IF	Citations
199	The Effective Reproduction Number as a Prelude to Statistical Estimation of Time-Dependent Epidemic Trends., 2009,, 103-121.		176
200	The spatial and temporal patterns of falciparum and vivax malaria in Perú: 1994–2006. Malaria Journal, 2009, 8, 142.	2.3	45
201	The Basic Reproduction Number of Infectious Diseases: Computation and Estimation Using Compartmental Epidemic Models., 2009,, 1-30.		25
202	Spatial and Temporal Dynamics of Rubella in Peru, 1997–2006: Geographic Patterns, Age at Infection and Estimation of Transmissibility. , 2009, , 325-341.		2
203	Adaptive vaccination strategies to mitigate pandemic influenzaMexico as a case study. PLOS Currents, 2009, 1, RRN1004.	1.4	7
204	The reproduction number \$R_t\$ in structured and nonstructured populations. Mathematical Biosciences and Engineering, 2009, 6, 239-259.	1.9	6
205	Quantifying the transmission potential of pandemic influenza. Physics of Life Reviews, 2008, 5, 50-77.	2.8	48
206	Signatures of non-homogeneous mixing in disease outbreaks. Mathematical and Computer Modelling, 2008, 48, 122-140.	2.0	18
207	Protecting residential care facilities from pandemic influenza. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 10625-10630.	7.1	35
208	The 1918–1919 influenza pandemic in England and Wales: spatial patterns in transmissibility and mortality impact. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 501-509.	2.6	136
209	Here's to Your Health. Chance, 2008, 21, 55-60.	0.2	7
210	Spatial and temporal dynamics of dengue fever in Peru: 1994–2006. Epidemiology and Infection, 2008, 136, 1667-1677.	2.1	65
211	Mathematical Assessment of Canada's Pandemic Influenza Preparedness Plan. Canadian Journal of Infectious Diseases and Medical Microbiology, 2008, 19, 185-192.	1.9	11
212	Rurality and pandemic influenza: geographic heterogeneity in the risks of infection and death in Kanagawa, Japan (1918-1919). New Zealand Medical Journal, 2008, 121, 18-27.	0.5	61
213	Estimation of the reproduction number of dengue fever from spatial epidemic data. Mathematical Biosciences, 2007, 208, 571-589.	1.9	17 3
214	On the role of cross-immunity and vaccines on the survival of less fit flu-strains. Theoretical Population Biology, 2007, 71, 20-29.	1.1	23
215	Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. Journal of the Royal Society Interface, 2007, 4, 155-166.	3.4	279
216	Assessing the role of basic control measures, antivirals and vaccine in curtailing pandemic influenza: scenarios for the US, UK and the Netherlands. Journal of the Royal Society Interface, 2007, 4, 505-521.	3.4	94

#	Article	IF	CITATIONS
217	Towards Real Time Epidemiology: Data Assimilation, Modeling and Anomaly Detection of Health Surveillance Data Streams. Lecture Notes in Computer Science, 2007, , 79-90.	1.3	16
218	Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Mathematical Biosciences and Engineering, 2007, 4, 457-470.	1.9	29
219	Household and community transmission of the Asian influenza A (H2N2) and influenza B viruses in 1957 and 1961. Southeast Asian Journal of Tropical Medicine and Public Health, 2007, 38, 1075-83.	1.0	9
220	Epidemiological and clinical characteristics of scorpionism in Colima, Mexico (2000–2001). Toxicon, 2006, 47, 753-758.	1.6	63
221	Modelling the transmission dynamics of acute haemorrhagic conjunctivitis: application to the 2003 outbreak in Mexico. Statistics in Medicine, 2006, 25, 1840-1857.	1.6	24
222	Transmission dynamics of the great influenza pandemic of 1918 in Geneva, Switzerland: Assessing the effects of hypothetical interventions. Journal of Theoretical Biology, 2006, 241, 193-204.	1.7	230
223	The role of spatial mixing in the spread of foot-and-mouth disease. Preventive Veterinary Medicine, 2006, 73, 297-314.	1.9	30
224	Identification of case clusters and counties with high infective connectivity in the 2001 epidemic of foot-and-mouth disease in Uruguay. American Journal of Veterinary Research, 2006, 67, 102-113.	0.6	13
225	Climate-based descriptive models of dengue fever: the 2002 epidemic in Colima, Mexico. Journal of Environmental Health, 2006, 68, 40-4, 55.	0.5	58
226	The dynamics of pulmonary tuberculosis in Colima, Mexico (1999–2002). Scandinavian Journal of Infectious Diseases, 2005, 37, 858-862.	1.5	3
227	Predicting scorpion sting incidence in an endemic region using climatological variables * . International Journal of Environmental Health Research, 2005, 15, 425-435.	2.7	36
228	Pediatric electrocardiograph abnormalities following Centruroides limpidus tecomanus scorpion envenomation. Toxicon, 2005, 45, 27-31.	1.6	19
229	The Role of Vaccination in the Control of SARS. Mathematical Biosciences and Engineering, 2005, 2, 753-769.	1.9	23
230	Model Parameters and Outbreak Control for SARS. Emerging Infectious Diseases, 2004, 10, 1258-1263.	4.3	195
231	The basic reproductive number of Ebola and the effects of public health measures: the cases of Congo and Uganda. Journal of Theoretical Biology, 2004, 229, 119-126.	1.7	466
232	SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. Journal of Theoretical Biology, 2003, 224, 1-8.	1.7	239