
Anton Berns

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8231527/publications.pdf Version: 2024-02-01

ANTON REDNS

#	Article	IF	CITATIONS
1	Synergistic tumor suppressor activity of BRCA2 and p53 in a conditional mouse model for breast cancer. Nature Genetics, 2001, 29, 418-425.	21.4	933
2	Induction of small cell lung cancer by somatic inactivation of both Trp53 and Rb1 in a conditional mouse model. Cancer Cell, 2003, 4, 181-189.	16.8	549
3	Loss of p16lnk4a confers susceptibility to metastatic melanoma in mice. Nature, 2001, 413, 83-86.	27.8	522
4	Somatic inactivation of E-cadherin and p53 in mice leads to metastatic lobular mammary carcinoma through induction of anoikis resistance and angiogenesis. Cancer Cell, 2006, 10, 437-449.	16.8	522
5	Somatic loss of BRCA1 and p53 in mice induces mammary tumors with features of human <i>BRCA1</i> -mutated basal-like breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 12111-12116.	7.1	428
6	Cell of Origin of Small Cell Lung Cancer: Inactivation of Trp53 and Rb1 in Distinct Cell Types of Adult Mouse Lung. Cancer Cell, 2011, 19, 754-764.	16.8	428
7	High-throughput retroviral tagging to identify components of specific signaling pathways in cancer. Nature Genetics, 2002, 32, 153-159.	21.4	340
8	A Functional Role for Tumor Cell Heterogeneity in a Mouse Model of Small Cell Lung Cancer. Cancer Cell, 2011, 19, 244-256.	16.8	330
9	Abnormal myotonic dystrophy protein kinase levels produce only mild myopathy in mice. Nature Genetics, 1996, 13, 316-324.	21.4	320
10	Conditional mouse models of sporadic cancer. Nature Reviews Cancer, 2002, 2, 251-265.	28.4	283
11	p15Ink4b is a critical tumour suppressor in the absence of p16Ink4a. Nature, 2007, 448, 943-946.	27.8	237
12	Multiple cells-of-origin of mutant K-Ras–induced mouse lung adenocarcinoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 4952-4957.	7.1	205
13	Origins, genetic landscape, and emerging therapies of small cell lung cancer. Genes and Development, 2015, 29, 1447-1462.	5.9	194
14	Mouse model for lung tumorigenesis through Cre/lox controlled sporadic activation of the K-Ras oncogene. Oncogene, 2001, 20, 6551-6558.	5.9	190
15	SOX2 Is the Determining Oncogenic Switch in Promoting Lung Squamous Cell Carcinoma from Different Cells of Origin. Cancer Cell, 2016, 30, 519-532.	16.8	178
16	Cell of origin of lung cancer. Molecular Oncology, 2010, 4, 397-403.	4.6	153
17	A Conditional Mouse Model for Malignant Mesothelioma. Cancer Cell, 2008, 13, 261-271.	16.8	126
18	Mouse models for lung cancer. Molecular Oncology, 2013, 7, 165-177.	4.6	121

ANTON BERNS

#	Article	lF	CITATIONS
19	New Approaches to SCLC Therapy: From the Laboratory to the Clinic. Journal of Thoracic Oncology, 2020, 15, 520-540.	1.1	119
20	Transcription Factor NFIB Is a Driver of Small Cell Lung Cancer Progression in Mice and Marks Metastatic Disease in Patients. Cell Reports, 2016, 16, 631-643.	6.4	117
21	Drugging the addict: nonâ€oncogene addiction as a target for cancer therapy. EMBO Reports, 2016, 17, 1516-1531.	4.5	111
22	Cells of origin of lung cancers: lessons from mouse studies. Genes and Development, 2020, 34, 1017-1032.	5.9	108
23	Selective resistance to the PARP inhibitor olaparib in a mouse model for BRCA1-deficient metaplastic breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 8409-8414.	7.1	106
24	The Comparative Pathology of Genetically Engineered Mouse Models for Neuroendocrine Carcinomas of the Lung. Journal of Thoracic Oncology, 2015, 10, 553-564.	1.1	100
25	Polycomb Repressive Complex 2 Is a Barrier to KRAS-Driven Inflammation and Epithelial-Mesenchymal Transition in Non-Small-Cell Lung Cancer. Cancer Cell, 2016, 29, 17-31.	16.8	96
26	PTEN is essential for cell migration but not for fate determination and tumourigenesis in the cerebellum. Development (Cambridge), 2002, 129, 3513-22.	2.5	86
27	Chromatin Landscapes of Retroviral and Transposon Integration Profiles. PLoS Genetics, 2014, 10, e1004250.	3.5	80
28	Rapid target gene validation in complex cancer mouse models using reâ€derived embryonic stem cells. EMBO Molecular Medicine, 2014, 6, 212-225.	6.9	78
29	Paracrine signaling between tumor subclones of mouse SCLC: a critical role of ETS transcription factor Pea3 in facilitating metastasis. Genes and Development, 2015, 29, 1587-1592.	5.9	63
30	An Inducible Mouse Model of Melanoma Expressing a Defined Tumor Antigen. Cancer Research, 2006, 66, 3278-3286.	0.9	47
31	Tumor Heterogeneity Underlies Differential Cisplatin Sensitivity in Mouse Models of Small-Cell Lung Cancer. Cell Reports, 2019, 27, 3345-3358.e4.	6.4	42
32	Using the GEMM-ESC strategy to study gene function in mouse models. Nature Protocols, 2015, 10, 1755-1785.	12.0	41
33	Rapid validation of cancer genes in chimeras derived from established genetically engineered mouse models. BioEssays, 2011, 33, 701-710.	2.5	36
34	Using TRIP for genome-wide position effect analysis in cultured cells. Nature Protocols, 2014, 9, 1255-1281.	12.0	34
35	Towards a cancer mission in Horizon Europe: recommendations. Molecular Oncology, 2020, 14, 1589-1615.	4.6	33
36	FGFR1 Oncogenic Activation Reveals an Alternative Cell of Origin of SCLC in Rb1/p53 Mice. Cell Reports, 2020, 30, 3837-3850.e3.	6.4	30

ANTON BERNS

#	Article	IF	CITATIONS
37	Inhibition of the Replication Stress Response Is a Synthetic Vulnerability in SCLC That Acts Synergistically in Combination with Cisplatin. Molecular Cancer Therapeutics, 2019, 18, 762-770.	4.1	25
38	Awakening of "Schlafen11―to Tackle Chemotherapy Resistance in SCLC. Cancer Cell, 2017, 31, 169-171.	16.8	22
39	The blind spot of p53. Nature, 2010, 468, 519-520.	27.8	18
40	Sentinels of chromatin: chromodomain helicase DNA-binding proteins in development and disease. Genes and Development, 2021, 35, 1403-1430.	5.9	17
41	Senescence: a companion in chemotherapy?. Cancer Cell, 2002, 1, 309-311.	16.8	15
42	Rejuvenation by Therapeutic Elimination of Senescent Cells. Cell, 2017, 169, 3-5.	28.9	15
43	Mouse models of cancer. Molecular Oncology, 2013, 7, 143-145.	4.6	14
44	A natural WNT signaling variant potently synergizes with Cdkn2ab loss in skin carcinogenesis. Nature Communications, 2019, 10, 1425.	12.8	13
45	A tRNA with Oncogenic Capacity. Cell, 2008, 133, 29-30.	28.9	12
46	Gene expression regulation by the Chromodomain helicase DNA-binding protein 9 (CHD9) chromatin remodeler is dispensable for murine development. PLoS ONE, 2020, 15, e0233394.	2.5	11
47	Kras and Hras—what is the difference?. Nature Genetics, 2008, 40, 1149-1150.	21.4	10
48	European Academy of Cancer Sciences—Designation of Comprehensive Cancer Centres of Excellence. European Journal of Cancer, 2018, 93, 138-139.	2.8	10
49	European Academy of Cancer Sciences – position paper. Molecular Oncology, 2018, 12, 1829-1837.	4.6	9
50	The Porto European Cancer Research Summit 2021. Molecular Oncology, 2021, 15, 2507-2543.	4.6	7
51	The steady progress of targeted therapies, promising advances for lung cancer. Ecancermedicalscience, 2016, 10, 638.	1.1	6
52	Qualityâ€assured research environments for translational cancer research. Molecular Oncology, 2019, 13, 543-548.	4.6	5
53	Boosting the social impact of innovative cancer research – towards a missionâ€oriented approach to cancer. Molecular Oncology, 2019, 13, 497-501.	4.6	5
54	The therapy escapes of small-cell lung cancer. Nature Cancer, 2020, 1, 374-375.	13.2	3

#	Article	IF	CITATIONS
55	Jump-starting cancer gene discovery. Nature Biotechnology, 2009, 27, 251-252.	17.5	2
56	Wnt Down, Tumors Wind Up?. Cell, 2015, 161, 1494-1496.	28.9	2
57	Animal Models of Cancer: What We Can Learn From Mice. , 2018, , 60-60.		2
58	We Are Standing on the Shoulders of Giants. Cancer Research, 2016, 76, 4307-4308.	0.9	1
59	Tumor heterogeneity-induced signaling regulates SCLC metastasis. Cell Cycle, 2015, 14, 3347-3348.	2.6	0