
Birm-June Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823122/publications.pdf Version: 2024-02-01

RIDM-LUNE KIM

#	Article	IF	CITATIONS
1	Effects of Cellulose Nanocrystal and Inorganic Nanofillers on the Morphological and Mechanical Properties of Digital Light Processing (DLP) 3D-Printed Photopolymer Composites. Applied Sciences (Switzerland), 2021, 11, 6835.	2.5	7
2	Effects of wood flour and MA-EPDM on the properties of fused deposition modeling 3D-printed poly lactic acid composites. BioResources, 2021, 16, 7122-7138.	1.0	0
3	Effects of Methylenediphenyl 4,4'-Diisocyanate and Maleic Anhydride as Coupling Agents on the Properties of Polylactic Acid/Polybutylene Succinate/Wood Flour Biocomposites by Reactive Extrusion. Materials, 2020, 13, 1660.	2.9	19
4	Hybrid effects of carbon fiber and nanoclay as fillers on the performances of recycled wood-plastic composites. BioResources, 2020, 15, 7671-7686.	1.0	1
5	Effects of Nanoclay and Class Fiber on the Microstructural, Mechanical, Thermal, and Water Absorption Properties of Recycled WPCs. Journal of the Korean Wood Science and Technology, 2019, 47, 472-485.	3.0	5
6	Comparative mechanical, fireâ€retarding, and morphological properties of highâ€density polyethylene/(wood flour) composites with different flame retardants. Journal of Vinyl and Additive Technology, 2018, 24, 3-12.	3.4	7
7	Effect of Nano-CaCO ₃ and Talc on Property and Weathering Performance of PP Composites. International Journal of Polymer Science, 2017, 2017, 1-9.	2.7	8
8	Mechanical and morphological properties of coextruded wood plastic composites with glass fiberâ€filled shell. Polymer Composites, 2016, 37, 824-834.	4.6	12
9	A Study on The Thermal Properties and Activation Energy of Rapidly Torrefied Oak Wood Powder using Non-isothermal Thermogravimetric Analysis. Journal of the Korean Wood Science and Technology, 2016, 44, 96-105.	3.0	3
10	Overview of Wood Plastic Composites: Focusing on Use of Bio-based Plastics and Co-extrusion Technique. Journal of the Korean Wood Science and Technology, 2014, 42, 499-509.	3.0	8
11	Mechanical and physical properties of core–shell structured wood plastic composites: Effect of shells with hybrid mineral and wood fillers. Composites Part B: Engineering, 2013, 45, 1040-1048.	12.0	49
12	High Density Polyethylene Composites Reinforced with Hybrid Inorganic Fillers: Morphology, Mechanical and Thermal Expansion Performance. Materials, 2013, 6, 4122-4138.	2.9	75
13	Experimental and numerical analysis of the sound insulation property of wood plastic composites (WPCs) filled with precipitated CaCO3. Holzforschung, 2013, 67, 301-306.	1.9	11
14	Recent Advances in the Sound Insulation Properties of Bio-based Materials. BioResources, 2013, 9, .	1.0	38
15	Co-Extruded Wood-Plastic Composites with Talc-Filled Shells: Morphology, Mechanical, and Thermal Expansion Performance. BioResources, 2013, 8, .	1.0	29
16	Performance of bamboo plastic composites with hybrid bamboo and precipitated calcium carbonate fillers. Polymer Composites, 2012, 33, 68-78.	4.6	33
17	Viscoelastic properties and peel strength of water-borne acrylic PSAs for labels. Journal of Adhesion Science and Technology, 2007, 21, 109-123.	2.6	8
18	Probe tack of tackified acrylic emulsion PSAs. International Journal of Adhesion and Adhesives, 2007, 27, 102-107.	2.9	17