Yanjie Su

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8231210/publications.pdf Version: 2024-02-01

		41258	60497
139	7,449	49	81
papers	citations	h-index	g-index
141 all docs	141 docs citations	141 times ranked	9832 citing authors

VANUE SU

#	Article	IF	CITATIONS
1	Nitrogen-doped, carbon-rich, highly photoluminescent carbon dots from ammonium citrate. Nanoscale, 2014, 6, 1890-1895.	2.8	793
2	Diffusion engineering of ions and charge carriers for stable efficient perovskite solar cells. Nature Communications, 2017, 8, 15330.	5.8	356
3	A green heterogeneous synthesis of N-doped carbon dots and their photoluminescence applications in solid and aqueous states. Nanoscale, 2014, 6, 10307-10315.	2.8	313
4	Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013, 5, 247-259.	14.4	241
5	Design of Hetero-Nanostructures on MoS ₂ Nanosheets To Boost NO ₂ Room-Temperature Sensing. ACS Applied Materials & Interfaces, 2018, 10, 22640-22649.	4.0	199
6	Fast one-step synthesis of N-doped carbon dots by pyrolyzing ethanolamine. Journal of Materials Chemistry C, 2014, 2, 7477-7481.	2.7	150
7	Efficient long lifetime room temperature phosphorescence of carbon dots in a potash alum matrix. Journal of Materials Chemistry C, 2015, 3, 2798-2801.	2.7	145
8	An ultrasensitive NO ₂ gas sensor based on a hierarchical Cu ₂ O/CuO mesocrystal nanoflower. Journal of Materials Chemistry A, 2018, 6, 17120-17131.	5.2	122
9	Three-dimensional conductive networks based on stacked SiO ₂ @graphene frameworks for enhanced gas sensing. Nanoscale, 2017, 9, 109-118.	2.8	117
10	Ti3C2Tx MXene/graphene nanocomposites: Synthesis and application in electrochemical energy storage. Journal of Alloys and Compounds, 2020, 815, 152403.	2.8	108
11	Exceptional negative thermal expansion and viscoelastic properties of graphene oxide paper. Carbon, 2012, 50, 2804-2809.	5.4	107
12	Enhanced formaldehyde detection based on Ni doping of SnO 2 nanoparticles by one-step synthesis. Sensors and Actuators B: Chemical, 2018, 263, 120-128.	4.0	107
13	One-step electrodeposition of nickel cobalt sulfide nanosheets on Ni nanowire film for hybrid supercapacitor. Electrochimica Acta, 2018, 259, 617-625.	2.6	104
14	Construction of MoS2/SnO2 heterostructures for sensitive NO2 detection at room temperature. Applied Surface Science, 2019, 493, 613-619.	3.1	104
15	Interface engineered WS2/ZnS heterostructures for sensitive and reversible NO2 room temperature sensing. Sensors and Actuators B: Chemical, 2019, 296, 126666.	4.0	98
16	A new strategy to prepare N-doped holey graphene for high-volumetric supercapacitors. Journal of Materials Chemistry A, 2016, 4, 9739-9743.	5.2	96
17	Enhanced NO ₂ sensing performance of reduced graphene oxide by in situ anchoring carbon dots. Journal of Materials Chemistry C, 2017, 5, 6862-6871.	2.7	93
18	Ultrasensitive room temperature NO2 sensors based on liquid phase exfoliated WSe2 nanosheets. Sensors and Actuators B: Chemical, 2019, 300, 127013.	4.0	93

Yanjie Su

#	Article	IF	CITATIONS
19	A non-enzymatic glucose sensor based on the composite of cubic Cu nanoparticles and arc-synthesized multi-walled carbon nanotubes. Biosensors and Bioelectronics, 2013, 47, 86-91.	5.3	91
20	Controllable synthesis of heterostructured CuO–NiO nanotubes and their synergistic effect for glycol gas sensing. Sensors and Actuators B: Chemical, 2020, 304, 127347.	4.0	87
21	Two-dimensional Cd-doped porous Co3O4 nanosheets for enhanced room-temperature NO2 sensing performance. Sensors and Actuators B: Chemical, 2020, 305, 127393.	4.0	87
22	Morphology Control and Photocatalysis Enhancement by in Situ Hybridization of Cuprous Oxide with Nitrogen-Doped Carbon Quantum Dots. Langmuir, 2016, 32, 9418-9427.	1.6	86
23	Two-dimensional NiO nanosheets with enhanced room temperature NO ₂ sensing performance via Al doping. Physical Chemistry Chemical Physics, 2017, 19, 19043-19049.	1.3	86
24	Light-assisted recovery for a highly-sensitive NO2 sensor based on RGO-CeO2 hybrids. Sensors and Actuators B: Chemical, 2018, 270, 119-129.	4.0	82
25	Paper-like graphene-Ag composite films with enhanced mechanical and electrical properties. Nanoscale Research Letters, 2013, 8, 32.	3.1	78
26	A Z-scheme photocatalyst for enhanced photocatalytic H2 evolution, constructed by growth of 2D plasmonic MoO3-x nanoplates onto 2D g-C3N4 nanosheets. Journal of Colloid and Interface Science, 2020, 567, 213-223.	5.0	77
27	Tunable band gap Cu2ZnSnS4xSe4(1â~'x) nanocrystals: experimental and first-principles calculations. CrystEngComm, 2011, 13, 2222.	1.3	75
28	Sonochemical synthesis of hierarchical WO3 flower-like spheres for highly efficient triethylamine detection. Sensors and Actuators B: Chemical, 2020, 306, 127536.	4.0	75
29	One-step synthesis of 2D C3N4-tin oxide gas sensors for enhanced acetone vapor detection. Sensors and Actuators B: Chemical, 2017, 253, 641-651.	4.0	74
30	Controllable synthesis of crescent-shaped porous NiO nanoplates for conductometric ethanol gas sensors. Sensors and Actuators B: Chemical, 2019, 296, 126642.	4.0	74
31	Hydrothermal synthesis of hexagonal CuSe nanoflakes with excellent sunlight-driven photocatalytic activity. CrystEngComm, 2014, 16, 9185-9190.	1.3	72
32	Direct Inkjet Printing of Aqueous Inks to Flexible All-Solid-State Graphene Hybrid Micro-Supercapacitors. ACS Applied Materials & Interfaces, 2019, 11, 46044-46053.	4.0	70
33	Carbon nanomaterials synthesized by arc discharge hot plasma. Carbon, 2015, 83, 90-99.	5.4	66
34	Glucose-assisted synthesis of hierarchical flower-like Co3O4 nanostructures assembled by porous nanosheets for enhanced acetone sensing. Sensors and Actuators B: Chemical, 2019, 288, 699-706.	4.0	66
35	Fast and recoverable NO ₂ detection achieved by assembling ZnO on Ti ₃ C ₂ T _{<i>x</i>} MXene nanosheets under UV illumination at room temperature. Nanoscale, 2022, 14, 3441-3451.	2.8	65
36	Blue and green photoluminescence graphene quantum dots synthesized from carbon fibers. Materials Letters, 2013, 93, 161-164.	1.3	63

#	Article	IF	CITATIONS
37	Two-dimensional MoSe ₂ nanosheets via liquid-phase exfoliation for high-performance room temperature NO ₂ gas sensors. Nanotechnology, 2019, 30, 445503.	1.3	63
38	Carbon quantum dots decorated Cu ₂ S nanowire arrays for enhanced photoelectrochemical performance. Nanoscale, 2016, 8, 8559-8567.	2.8	62
39	Highly Enhanced Visible-Light-Driven Photoelectrochemical Performance of ZnO-Modified In2S3 Nanosheet Arrays by Atomic Layer Deposition. Nano-Micro Letters, 2018, 10, 45.	14.4	62
40	ZnO nanowire/reduced graphene oxide nanocomposites for significantly enhanced photocatalytic degradation of Rhodamine 6G. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 56, 251-255.	1.3	61
41	Cobalt Doping To Boost the Electrochemical Properties of Ni@Ni ₃ S ₂ Nanowire Films for Highâ€Performance Supercapacitors. ChemSusChem, 2017, 10, 4056-4065.	3.6	61
42	Hierarchically Znln ₂ S ₄ nanosheet-constructed microwire arrays: template-free synthesis and excellent photocatalytic performances. Nanoscale, 2018, 10, 4735-4744.	2.8	61
43	One-pot liquid-phase exfoliation from graphite to graphene with carbon quantum dots. Nanoscale, 2015, 7, 10527-10534.	2.8	59
44	Arc synthesis of double-walled carbon nanotubes in low pressure air and their superior field emission properties. Carbon, 2013, 58, 92-98.	5.4	56
45	Hierarchical WS ₂ –WO ₃ Nanohybrids with P–N Heterojunctions for NO ₂ Detection. ACS Applied Nano Materials, 2021, 4, 1626-1634.	2.4	56
46	Rapid solid-phase microwave synthesis of highly photoluminescent nitrogen-doped carbon dots for Fe ³⁺ detection and cellular bioimaging. Nanotechnology, 2016, 27, 395706.	1.3	55
47	Controlled growth of vertically aligned ultrathin In ₂ S ₃ nanosheet arrays for photoelectrochemical water splitting. Nanoscale, 2018, 10, 1153-1161.	2.8	54
48	Hierarchical CoNi2S4 nanosheet/nanotube array structure on carbon fiber cloth for high-performance hybrid supercapacitors. Electrochimica Acta, 2019, 305, 81-89.	2.6	54
49	Low-cost synthesis of single-walled carbon nanotubes by low-pressure air arc discharge. Materials Research Bulletin, 2014, 50, 23-25.	2.7	53
50	A Novel Artificial Neuron-Like Gas Sensor Constructed from CuS Quantum Dots/Bi2S3 Nanosheets. Nano-Micro Letters, 2022, 14, 8.	14.4	53
51	Gold nanobipyramid@cuprous oxide jujube-like nanostructures for plasmon-enhanced photocatalytic performance. Applied Catalysis B: Environmental, 2018, 234, 26-36.	10.8	52
52	Highly sensitive and recoverable room-temperature NO2 gas detection realized by 2D/0D MoS2/ZnS heterostructures with synergistic effects. Sensors and Actuators B: Chemical, 2021, 347, 130608.	4.0	50
53	A one-pot synthesis of reduced graphene oxide–Cu2S quantum dot hybrids for optoelectronic devices. Nanoscale, 2013, 5, 8889.	2.8	49
54	Synthesis of CuInS2 nanowire arrays via solution transformation of Cu2S self-template for enhanced photoelectrochemical performance. Applied Catalysis B: Environmental, 2017, 203, 715-724.	10.8	49

#	Article	IF	CITATIONS
55	Non-woven fabric electrodes based on graphene-based fibers for areal-energy-dense flexible solid-state supercapacitors. Chemical Engineering Journal, 2020, 392, 123692.	6.6	48
56	Design of p–p heterojunctions based on CuO decorated WS ₂ nanosheets for sensitive NH ₃ gas sensing at room temperature. Nanotechnology, 2021, 32, 445502.	1.3	48
57	Scalable synthesis of γ-Fe2O3/CNT composite as high-performance anode material for lithium-ion batteries. Journal of Alloys and Compounds, 2019, 770, 116-124.	2.8	47
58	Facile synthesis and photoelectric properties of carbon dots with upconversion fluorescence using arc-synthesized carbon by-products. RSC Advances, 2014, 4, 4839.	1.7	46
59	Inkjet-Printed Ultrathin MoS ₂ -Based Electrodes for Flexible In-Plane Microsupercapacitors. ACS Applied Materials & Interfaces, 2020, 12, 39444-39454.	4.0	45
60	Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide. Sensors and Actuators B: Chemical, 2021, 345, 130423.	4.0	44
61	Synthesis of single-walled carbon nanotubes with selective diameter distributions using DC arc discharge under CO mixed atmosphere. Applied Surface Science, 2011, 257, 3123-3127.	3.1	43
62	Highly repeatable and sensitive three-dimensional γ-Fe2O3@reduced graphene oxide gas sensors by magnetic-field assisted assembly process. Sensors and Actuators B: Chemical, 2020, 306, 127546.	4.0	43
63	Construction, Application and Verification of a Novel Formaldehyde Gas Sensor System Based on Ni-Doped SnO ₂ Nanoparticles. IEEE Sensors Journal, 2021, 21, 11023-11030.	2.4	43
64	Graphene van der Waals heterostructures for high-performance photodetectors. Journal of Materials Chemistry C, 2019, 7, 11056-11067.	2.7	41
65	Novel SnSxSe1â^'x nanocrystals with tunable band gap: experimental and first-principles calculations. Journal of Materials Chemistry, 2011, 21, 12605.	6.7	40
66	Dual-targeted therapy in HER2-positive breast cancer cells with the combination of carbon dots/HER3 siRNA and trastuzumab. Nanotechnology, 2020, 31, 335102.	1.3	38
67	Diameter-control of single-walled carbon nanotubes produced by magnetic field-assisted arc discharge. Carbon, 2012, 50, 2556-2562.	5.4	36
68	Graphene/GaAs heterojunction for highly sensitive, self-powered Visible/NIR photodetectors. Materials Science in Semiconductor Processing, 2020, 111, 104989.	1.9	36
69	Hierarchically CuInS ₂ Nanosheet onstructed Nanowire Arrays for Photoelectrochemical Water Splitting. Advanced Materials Interfaces, 2016, 3, 1600494.	1.9	35
70	Prickly Ni3S2 nanowires modified CdS nanoparticles for highly enhanced visible-light photocatalytic H2 production. International Journal of Hydrogen Energy, 2017, 42, 6618-6626.	3.8	35
71	Highly Sensitive Room-Temperature NO ₂ Gas Sensors Based on Three-Dimensional Multiwalled Carbon Nanotube Networks on SiO ₂ Nanospheres. ACS Sustainable Chemistry and Engineering, 2020, 8, 13915-13923.	3.2	34
72	High-Performance Wearable Sensor Inspired by the Neuron Conduction Mechanism through Gold-Induced Sulfur Vacancies. ACS Sensors, 2022, 7, 816-826.	4.0	34

Yanjie Su

#	Article	IF	CITATIONS
73	Rapid mass production of ZnO nanowires by a modified carbothermal reduction method. Materials Letters, 2011, 65, 832-835.	1.3	33
74	Gas sensor based on defective graphene/pristine graphene hybrid towards high sensitivity detection of NO2. AIP Advances, 2019, 9, .	0.6	33
75	Highly sensitive NO ₂ gas sensors based on hexagonal SnS ₂ nanoplates operating at room temperature. Nanotechnology, 2020, 31, 075501.	1.3	30
76	Semiconducting single-walled carbon nanotube/graphene van der Waals junctions for highly sensitive all-carbon hybrid humidity sensors. Journal of Materials Chemistry C, 2020, 8, 3386-3394.	2.7	30
77	Highly Sensitive Broadband Singleâ€Walled Carbon Nanotube Photodetectors Enhanced by Separated Graphene Nanosheets. Advanced Optical Materials, 2018, 6, 1800791.	3.6	29
78	Multichannel Room-Temperature Gas Sensors Based on Magnetic-Field-Aligned 3D Fe ₃ O ₄ @SiO ₂ @Reduced Graphene Oxide Spheres. ACS Applied Materials & Interfaces, 2020, 12, 37418-37426.	4.0	29
79	Facile synthesis of amine-functionalized graphene quantum dots with highly pH-sensitive photoluminescence. Fullerenes Nanotubes and Carbon Nanostructures, 2017, 25, 704-709.	1.0	28
80	Noble metal (Ag, Au, Pd and Pt) doped TaS ₂ monolayer for gas sensing: a first-principles investigation. Physical Chemistry Chemical Physics, 2021, 23, 18359-18368.	1.3	28
81	Large-scale synthesis of few-walled carbon nanotubes by DC arc discharge in low-pressure flowing air. Materials Research Bulletin, 2013, 48, 3232-3235.	2.7	27
82	Controllable synthesis and photoelectric property of hexagonal SnS2 nanoflakes by Triton X-100 assisted hydrothermal method. Materials Letters, 2013, 111, 204-207.	1.3	27
83	In situ preparation of magnetic Ni-Au/graphene nanocomposites with electron-enhanced catalytic performance. Journal of Alloys and Compounds, 2017, 706, 377-386.	2.8	27
84	Binder-Free, Flexible, and Self-Standing Non-Woven Fabric Anodes Based on Graphene/Si Hybrid Fibers for High-Performance Li-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 27270-27277.	4.0	27
85	Rapid synthesis and characterization of magnesium oxide nanocubes via DC arc discharge. Materials Letters, 2011, 65, 100-103.	1.3	26
86	Synthesis of straight multi-walled carbon nanotubes by arc discharge in air and their field emission properties. Journal of Materials Science, 2012, 47, 6535-6541.	1.7	26
87	Self-Powered Broadband Photodetector Based on Single-Walled Carbon Nanotube/GaAs Heterojunctions. ACS Sustainable Chemistry and Engineering, 2020, 8, 15532-15539.	3.2	26
88	Structural improvement of CVD multi-walled carbon nanotubes by a rapid annealing process. Diamond and Related Materials, 2012, 25, 24-28.	1.8	25
89	Controlled one-step synthesis of spiky polycrystalline nickel nanowires with enhanced magnetic properties. CrystEngComm, 2014, 16, 8442.	1.3	25
90	Linear humidity response of carbon dot-modified molybdenum disulfide. Physical Chemistry Chemical Physics, 2018, 20, 4083-4091.	1.3	25

#	Article	IF	CITATIONS
91	Room temperature DMMP gas sensing based on cobalt phthalocyanine derivative/graphene quantum dot hybrid materials. RSC Advances, 2021, 11, 14805-14813.	1.7	24
92	Three-Dimensional Fe3O4@Reduced Graphene Oxide Heterojunctions for High-Performance Room-Temperature NO2 Sensors. Frontiers in Materials, 2019, 6, .	1.2	23
93	Hydrothermal synthesis of porous copper microspheres towards efficient 4-nitrophenol reduction. Materials Research Bulletin, 2016, 83, 329-335.	2.7	22
94	Enhancing room-temperature NO ₂ gas sensing performance based on a metal phthalocyanine/graphene quantum dot hybrid material. RSC Advances, 2021, 11, 5618-5628.	1.7	22
95	Facile one-pot synthesis and band gap calculations of ZnxCd1â^'xS nanorods. Materials Letters, 2013, 102-103, 94-97.	1.3	20
96	One-pot preparation of thin nanoporous copper foils with enhanced light absorption and SERS properties. CrystEngComm, 2015, 17, 1296-1304.	1.3	20
97	Length-controlled synthesis of single-walled carbon nanotubes by arc discharge with variable cathode diameters. Physica E: Low-Dimensional Systems and Nanostructures, 2012, 44, 1548-1551.	1.3	18
98	One-pot synthesis of ultranarrow single crystal ZnSe nanowires. Materials Letters, 2012, 67, 269-272.	1.3	18
99	Magnetic-field-induced diameter-selective synthesis of single-walled carbon nanotubes. Nanoscale, 2012, 4, 1717.	2.8	17
100	Hexagonally ordered microbowl arrays decorated with ultrathin CuInS2 nanosheets for enhanced photoelectrochemical performance. Journal of Energy Chemistry, 2020, 51, 134-142.	7.1	17
101	Band gap tunable Sn-doped PbSe nanocrystals: solvothermal synthesis and first-principles calculations. CrystEngComm, 2012, 14, 7408.	1.3	16
102	Synthesis of carbon nanotubes on graphene quantum dot surface by catalyst free chemical vapor deposition. Carbon, 2014, 68, 399-405.	5.4	16
103	A hybrid catalyst composed of reduced graphene oxide/Cu ₂ S quantum dots as a transparent counter electrode for dye sensitized solar cells. RSC Advances, 2015, 5, 9075-9078.	1.7	16
104	Bandgap tuning and photocatalytic activities of CuSe1–xSx nanoflakes. Ceramics International, 2016, 42, 211-219.	2.3	16
105	Binary nanosheet frameworks of graphene/polyaniline composite for high-areal flexible supercapacitors. Materials Chemistry and Physics, 2021, 273, 125128.	2.0	15
106	Synthesis of ternary PbxSn1â^'xS nanocrystals with tunable band gap. CrystEngComm, 2011, 13, 6628.	1.3	14
107	Facile synthesis of single-crystalline mesoporous NiO nanosheets as high-performance anode materials for Li-ion batteries. Journal of Materials Science: Materials in Electronics, 2017, 28, 13853-13860.	1.1	14
108	Enhancing room-temperature NO2 detection of cobalt phthalocyanine based gas sensor at an ultralow laser exposure. Physical Chemistry Chemical Physics, 2020, 22, 18499-18506.	1.3	14

#	Article	lF	CITATIONS
109	Self-templated growth of CuInS2 nanosheet arrays for photoelectrochemical water splitting. Journal of Alloys and Compounds, 2019, 809, 151794.	2.8	13
110	Classification and Concentration Prediction of VOCs With High Accuracy Based on an Electronic Nose Using an ELM-ELM Integrated Algorithm. IEEE Sensors Journal, 2022, 22, 14458-14469.	2.4	13
111	Zn _{<i>x</i>} Cd _{1â^'<i>x</i>} Se nanomultipods with tunable band gaps: synthesis and first-principles calculations. Nanotechnology, 2013, 24, 235706.	1.3	12
112	Hierarchically porous micro/nanostructured copper surfaces with enhanced antireflection and hydrophobicity. Applied Surface Science, 2016, 361, 11-17.	3.1	11
113	<scp>Metalâ€</scp> organic frameworks and their derivatives as anode material in lithiumâ€ion batteries: Recent advances towards novel configurations. International Journal of Energy Research, 2022, 46, 13178-13204.	2.2	10
114	Highly compressible carbon nanowires synthesized by coating single-walled carbon nanotubes. Carbon, 2011, 49, 3579-3584.	5.4	9
115	Enhancing the photosensitivity of C60 nanorod visible photodetectors by coupling with Cu2O nanocubes. Journal of Materials Chemistry C, 2018, 6, 1715-1721.	2.7	9
116	Controllable Synthesis of Fluorescent Carbon Dots and Their Detection Application as Nanoprobes. Nano-Micro Letters, 2013, 5, 247.	14.4	9
117	Laser-Induced MoO <i>_x</i> /Sulfur-Doped Graphene Hybrid Frameworks as Efficient Antibacterial Agents. Langmuir, 2021, 37, 1596-1604.	1.6	8
118	Microwave-Assisted Chitosan-Functionalized Graphene Oxide as Controlled Intracellular Drug Delivery Nanosystem for Synergistic Antitumour Activity. Nanoscale Research Letters, 2021, 16, 75.	3.1	8
119	NO ₂ gas sensor based on graphene decorated with Ge quantum dots. Nanotechnology, 2019, 30, 074004.	1.3	6
120	PANI/Graphene quantum dots/graphene co-coated compressed non-woven towel for wearable energy storage. Synthetic Metals, 2020, 270, 116571.	2.1	6
121	Synthesis and optoelectronic properties of reduced graphene oxide/InP quantum dot hybrids. RSC Advances, 2016, 6, 97861-97864.	1.7	5
122	ZnO Nanotapered Arrays With Successively Modulated Sharpness Via a Supersaturation-Controlled Hydrothermal Reaction for Efficient Field Emitters. IEEE Nanotechnology Magazine, 2016, 15, 261-267.	1.1	5
123	3D highly efficient photonic micro concave-pit arrays for enhanced solar water splitting. Nanoscale, 2019, 11, 18071-18080.	2.8	5
124	Inâ€plane Defect Engineering Enabling Ultraâ€stable Graphene Paperâ€based Hosts for Lithium Metal Anodes. ChemElectroChem, 2021, 8, 3273-3281.	1.7	5
125	Controlled Synthesis of Different Metal Oxide Nanostructures by Direct Current Arc Discharge. Journal of Nanoscience and Nanotechnology, 2013, 13, 1078-1081.	0.9	4
126	ZnO nanoplate clusters with numerous enlarged catalytic interface exposures via a hydrothermal method for improved and recyclable photocatalytic activity. Journal of Materials Science: Materials in Electronics, 2018, 29, 1576-1583.	1.1	4

#	Article	IF	CITATIONS
127	Carbon Foam Fibers with a Concentric Tubeâ€Core/Threeâ€Dimensional Nanosheetâ€Sheath Structure for Highâ€Performance Lithiumâ€Sulfur Batteries. ChemElectroChem, 2021, 8, 873-879.	1.7	4
128	Lithium titanate nanoplates embedded with graphene quantum dots as electrode materials for high-rate lithium-ion batteries. Nanotechnology, 2021, 32, 505403.	1.3	4
129	Vapor-phase chemical synthesis of magnesium oxide nanowires by DC arc discharge. Journal of Nanoparticle Research, 2011, 13, 3229-3233.	0.8	3
130	Photolithography enhancement by incorporating photoluminescent nanoscale cesium iodide molecular dots into the photoresists. Journal of Nanoparticle Research, 2013, 15, 1.	0.8	2
131	Group III dopant segregation and semiconductor-to-metal transition in ZnO nanowires: a first principles study. RSC Advances, 2013, 3, 19793.	1.7	2
132	Enhanced electron field emission characteristics of single-walled carbon nanotube films by ultrasonic bonding. Physica E: Low-Dimensional Systems and Nanostructures, 2014, 63, 165-168.	1.3	2
133	Conducting polymer-bridged three-dimensional heterojunctions of reduced graphene oxide/ <mml:math <br="" display="inline" id="d1e836" xmlns:mml="http://www.w3.org/1998/Math/MathML">altimg="si51.svg"><mml:mi>î³</mml:mi></mml:math> Fe2O3 hybrids for high-performance NO2 gas sensing. Results in Surfaces and Interfaces. 2022. 7. 100057.	1.0	1
134	All-Carbon van der Waals Heterojunction Photodetectors. Springer Series in Materials Science, 2022, , 131-147.	0.4	0
135	Carbon-Based Heterojunction Broadband Photodetectors. Springer Series in Materials Science, 2022, , 91-129.	0.4	0
136	Introduction of Carbon Nanostructures. Springer Series in Materials Science, 2022, , 1-26.	0.4	0
137	Carbon Nanotube/semiconductor van der Waals Heterojunction Solar Cells. Springer Series in Materials Science, 2022, , 149-170.	0.4	0
138	Characterizations of Carbon Nanotubes and Graphene. Springer Series in Materials Science, 2022, , 65-90.	0.4	0
139	Controlled Growths of Carbon Nanotubes and Graphene. Springer Series in Materials Science, 2022, , 41-64.	0.4	0