## Zan Qu

## List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8231076/zan-qu-publications-by-year.pdf

Version: 2024-04-11

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

66 4,905 115 41 h-index g-index citations papers 118 5,796 5.87 9.4 avg, IF L-index ext. citations ext. papers

| #   | Paper                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | IF                  | Citations |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|-----------|
| 115 | Regulation of the Sulfur Environment in Clusters to Construct a Mn-SnS Framework for Mercury Bonding <i>Environmental Science &amp; Environmental Science </i>                                                                   | 10.3                | 3         |
| 114 | Sustained-release of interlayer chloride in iron oxychloride for mercury oxidation from industrial flue gas. <i>Chemical Engineering Journal</i> , <b>2022</b> , 429, 132502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.7                | O         |
| 113 | Surface protection method for the magnetic core using covalent organic framework shells and its application in As(III) depth removal from acid wastewater <i>Journal of Environmental Sciences</i> , <b>2022</b> , 115, 1-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 6.4                 | 1         |
| 112 | Enhanced simultaneous absorption of NO and SO in oxidation-reduction-absorption process with a compounded system based on NaSO <i>Journal of Environmental Sciences</i> , <b>2022</b> , 111, 1-10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.4                 | 3         |
| 111 | Fabrication of Cu2S hollow nanocages with enhanced high-temperature adsorption activity and recyclability for elemental mercury capture. <i>Chemical Engineering Journal</i> , <b>2022</b> , 427, 130935                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 14.7                | 6         |
| 110 | Selective uptake of gaseous sulfur trioxide and mercury in ZnO-CuS composite at elevated temperatures from SO2-rich flue gas. <i>Chemical Engineering Journal</i> , <b>2022</b> , 427, 132035                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 14.7                | 1         |
| 109 | Morphology control enables [SnS4]4lælusters and MgFe-LDHs dual active sites for the adsorption of mercury and arsenic ions. <i>Chemical Engineering Journal</i> , <b>2021</b> , 133761                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.7                |           |
| 108 | Strengthen the Affinity of Element Mercury on the Carbon-Based Material by Adjusting the Coordination Environment of Single-Site Manganese. <i>Environmental Science &amp; Environmental Science &amp; Environme</i>                                                                     | 10.3                | 2         |
| 107 | Metastable Facet-Controlled CuWS Single Crystals with Enhanced Adsorption Activity for Gaseous Elemental Mercury. <i>Environmental Science &amp; Elemental Science &amp; Element</i> | 10.3                | 6         |
| 106 | Production of HS with a Novel Short-Process for the Removal of Heavy Metals in Acidic Effluents from Smelting Flue-Gas Scrubbing Systems. <i>Environmental Science &amp; Environmental Science &amp; Environment</i>                                                                     | 99 <sup>1,0.3</sup> | 4         |
| 105 | Adsorption of Gaseous Mercury for Engineering Optimization: From Macrodynamics to Adsorption Kinetics and Thermodynamics. <i>ACS ES&amp;T Engineering</i> , <b>2021</b> , 1, 865-873                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                     | 8         |
| 104 | Co-absorption and Reduction Mechanism of SO2 and NO2 from Flue Gas Using a Na2SO3 Solution with an Oxidation Inhibitor. <i>Environmental Engineering Science</i> , <b>2021</b> , 38, 277-284                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 2                   | 0         |
| 103 | Dual-functional Sites for Selective Adsorption of Mercury and Arsenic ions in [SnS]/MgFe-LDH from Wastewater. <i>Journal of Hazardous Materials</i> , <b>2021</b> , 403, 123940                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.8                | 24        |
| 102 | Radical-Induced Oxidation Removal of Mercury by Ozone Coupled with Bromine. <i>ACS ES&amp;T Engineering</i> , <b>2021</b> , 1, 110-116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 3         |
| 101 | NOx Absorption Enhancement and Sulfite Oxidation Inhibition via a Match Strategy in Na2SO3 Solution from a Wet Flue Gas Denitration System. <i>ACS ES&amp;T Engineering</i> , <b>2021</b> , 1, 100-109                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                     | 1         |
| 100 | Mercury removal from flue gas using UiO-66-type metal-organic frameworks grafted with organic functionalities. <i>Fuel</i> , <b>2021</b> , 289, 119807                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1                 | 9         |
| 99  | Shell-thickness-induced spontaneous inward migration of mercury in porous ZnO@CuS for gaseous mercury immobilization. <i>Chemical Engineering Journal</i> , <b>2021</b> , 420, 127592                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 14.7                | 15        |

| 98 | Synergistic interaction and mechanistic evaluation of NO oxidation catalysis on Pt/Fe2O3 cubes. <i>Chemical Engineering Journal</i> , <b>2021</b> , 413, 127447                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.7              | 9  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|----|
| 97 | Boosting RuO2 Surface Reactivity by Cu Active Sites over Ru/Cu-SSZ-13 for Simultaneous Catalytic Oxidation of CO and NH3. <i>Journal of Physical Chemistry C</i> , <b>2021</b> , 125, 17031-17041                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.8               | 3  |
| 96 | Catalytic performance and mechanistic evaluation of sulfated CeO cubes for selective catalytic reduction of NO with ammonia. <i>Journal of Hazardous Materials</i> , <b>2021</b> , 420, 126545                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.8              | 7  |
| 95 | Insight into the interfacial stability and reaction mechanism between gaseous mercury and chalcogen-based sorbents in SO-containing flue gas. <i>Journal of Colloid and Interface Science</i> , <b>2020</b> , 577, 503-511                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 9.3               | 9  |
| 94 | Acceleration of Hg Adsorption onto Natural Sphalerite by Cu Activation during Flotation: Mechanism and Applications in Hg Recovery. <i>Environmental Science &amp; Environmental Sci</i>                                                                                                                                             | 6 <sup>1963</sup> | 14 |
| 93 | Atomically Dispersed Manganese on a Carbon-Based Material for the Capture of Gaseous Mercury: Mechanisms and Environmental Applications. <i>Environmental Science &amp; Environmental &amp; Envi</i> | 5 <u>1</u> 87     | 17 |
| 92 | Enhancing the catalytic oxidation of elemental mercury and suppressing sulfur-toxic adsorption sites from SO-containing gas in Mn-SnS. <i>Journal of Hazardous Materials</i> , <b>2020</b> , 392, 122230                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 12.8              | 21 |
| 91 | Alkali-induced deactivation mechanism of V2O5-WO3/TiO2 catalyst during selective catalytic reduction of NO by NH3 in aluminum hydrate calcining flue gas. <i>Applied Catalysis B: Environmental</i> , <b>2020</b> , 270, 118872                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 21.8              | 26 |
| 90 | Co-doped ZnS with large adsorption capacity for recovering Hg from non-ferrous metal smelting gas as a co-benefit of electrostatic demisters. <i>Environmental Science and Pollution Research</i> , <b>2020</b> , 27, 20469-20477                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.1               | 17 |
| 89 | Utilization of Ag nanoparticles anchored in covalent organic frameworks for mercury removal from acidic waste water. <i>Journal of Hazardous Materials</i> , <b>2020</b> , 389, 121824                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.8              | 49 |
| 88 | Removal of Hg with Polypyrrole-Functionalized FeO/Kaolin: Synthesis, Performance and Optimization with Response Surface Methodology. <i>Nanomaterials</i> , <b>2020</b> , 10,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.4               | 7  |
| 87 | Gaseous mercury capture using supported CuSx on layered double hydroxides from SO2-rich flue gas. <i>Chemical Engineering Journal</i> , <b>2020</b> , 400, 125963                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 14.7              | 17 |
| 86 | Selective Reductive Removal of Silver Ions from Acidic Solutions by Redox-Active Covalent Organic Frameworks. <i>ACS Applied Materials &amp; Acs Applied &amp; A</i>                                                     | 9.5               | 6  |
| 85 | Zinc concentrate internal circulation technology for elemental mercury recovery from zinc smelting flue gas. <i>Fuel</i> , <b>2020</b> , 280, 118566                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.1               | 5  |
| 84 | Stepwise Ions Incorporation Method for Continuously Activating PbS to Recover Mercury from Hg-Rich Flue Gas. <i>Environmental Science &amp; Environmental Sc</i>                                                                                                                                         | 10.3              | 13 |
| 83 | Surface nano-traps of Fe0/COFs for arsenic(III) depth removal from wastewater in non-ferrous smelting industry. <i>Chemical Engineering Journal</i> , <b>2020</b> , 381, 122559                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 14.7              | 32 |
| 82 | Surface acidity enhancement of CeO2 catalysts via modification with a heteropoly acid for the selective catalytic reduction of NO with ammonia. <i>Catalysis Science and Technology</i> , <b>2019</b> , 9, 5774-5785                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.5               | 12 |
| 81 | Design of Co3O4/CeO2©o3O4 hierarchical binary oxides for the catalytic oxidation of dibromomethane. <i>Journal of Industrial and Engineering Chemistry</i> , <b>2019</b> , 73, 134-141                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 6.3               | 14 |

| 80 | Facile Synthesis of Polypyrrole-Functionalized CoFeD@SiOIfor Removal for Hg(II). <i>Nanomaterials</i> , <b>2019</b> , 9,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 5.4  | 23  |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 79 | One Step Interface Activation of ZnS Using Cupric Ions for Mercury Recovery from Nonferrous Smelting Flue Gas. <i>Environmental Science &amp; Environmental </i> | 10.3 | 57  |
| 78 | A sulfur-resistant CuS-modified active coke for mercury removal from municipal solid waste incineration flue gas. <i>Environmental Science and Pollution Research</i> , <b>2019</b> , 26, 24831-24839                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 5.1  | 14  |
| 77 | Immobilization of elemental mercury in non-ferrous metal smelting gas using ZnSe1⊠Sx nanoparticles. <i>Fuel</i> , <b>2019</b> , 254, 115641                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 7.1  | 29  |
| 76 | Recyclable CuS sorbent with large mercury adsorption capacity in the presence of SO2 from non-ferrous metal smelting flue gas. <i>Fuel</i> , <b>2019</b> , 235, 847-854                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1  | 86  |
| 75 | Study on the regenerable sulfur-resistant sorbent for mercury removal from nonferrous metal smelting flue gas. <i>Fuel</i> , <b>2019</b> , 241, 451-458                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 7.1  | 43  |
| 74 | [SnS] clusters modified MgAl-LDH composites for mercury ions removal from acid wastewater. <i>Environmental Pollution</i> , <b>2019</b> , 247, 146-154                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 9.3  | 14  |
| 73 | Graphene enhanced Mn-Ce binary metal oxides for catalytic oxidation and adsorption of elemental mercury from coal-fired flue gas. <i>Chemical Engineering Journal</i> , <b>2019</b> , 358, 1499-1506                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 14.7 | 56  |
| 72 | Morphology-controlled synthesis and sulfur modification of 3D hierarchical layered double hydroxides for gaseous elemental mercury removal. <i>Journal of Colloid and Interface Science</i> , <b>2019</b> , 536, 431-439                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 9.3  | 18  |
| 71 | Ag-Fe3O4@rGO ternary magnetic adsorbent for gaseous elemental mercury removal from coal-fired flue gas. <i>Fuel</i> , <b>2019</b> , 239, 579-586                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 7.1  | 44  |
| 70 | Hierarchical Ag-SiO@FeO magnetic composites for elemental mercury removal from non-ferrous metal smelting flue gas. <i>Journal of Environmental Sciences</i> , <b>2019</b> , 79, 111-120                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.4  | 29  |
| 69 | Combined effects of Ag and UiO-66 for removal of elemental mercury from flue gas. <i>Chemosphere</i> , <b>2018</b> , 197, 65-72                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 8.4  | 31  |
| 68 | Cu-BTC as a novel material for elemental mercury removal from sintering gas. <i>Fuel</i> , <b>2018</b> , 217, 297-305                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.1  | 41  |
| 67 | A novel method for the sequential removal and separation of multiple heavy metals from wastewater. <i>Journal of Hazardous Materials</i> , <b>2018</b> , 342, 617-624                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 12.8 | 105 |
| 66 | Elemental mercury catalytic oxidation removal and SeO2 poisoning investigation over RuO2 modified Ce-Zr complex. <i>Applied Catalysis A: General</i> , <b>2018</b> , 564, 64-71                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 5.1  | 12  |
| 65 | Research of mercury removal from sintering flue gas of iron and steel by the open metal site of Mil-101(Cr). <i>Journal of Hazardous Materials</i> , <b>2018</b> , 351, 301-307                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 12.8 | 46  |
| 64 | Design of 3D MnO/Carbon sphere composite for the catalytic oxidation and adsorption of elemental mercury. <i>Journal of Hazardous Materials</i> , <b>2018</b> , 342, 69-76                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 12.8 | 77  |
| 63 | A Mild and Facile Synthesis of Amino Functionalized CoFeD@SiOlfor Hg(II) Removal.  Nanomaterials, 2018, 8,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.4  | 28  |

## (2016-2017)

| 62 | Effective and regenerable Ag/graphene adsorbent for Hg(II) removal from aqueous solution. <i>Fuel</i> , <b>2017</b> , 203, 128-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1  | 41  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 61 | Ag-Mo modified SCR catalyst for a co-beneficial oxidation of elemental mercury at wide temperature range. <i>Fuel</i> , <b>2017</b> , 200, 236-243                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1  | 26  |
| 60 | Morphology-dependent properties of Co 3 O 4 /CeO 2 catalysts for low temperature dibromomethane (CH 2 Br 2 ) oxidation. <i>Chemical Engineering Journal</i> , <b>2017</b> , 320, 124-134                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 14.7 | 60  |
| 59 | [MoS] Cluster Bridges in Co-Fe Layered Double Hydroxides for Mercury Uptake from S-Hg Mixed Flue Gas. <i>Environmental Science &amp; Technology</i> , <b>2017</b> , 51, 10109-10116                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.3 | 77  |
| 58 | Catalytic oxidation of dibromomethane over Ti-modified CoO catalysts: Structure, activity and mechanism. <i>Journal of Colloid and Interface Science</i> , <b>2017</b> , 505, 870-883                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 9.3  | 11  |
| 57 | Gaseous Heterogeneous Catalytic Reactions over Mn-Based Oxides for Environmental Applications: A Critical Review. <i>Environmental Science &amp; Environmental Environme</i>                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.3 | 201 |
| 56 | Stabilization of mercury over Mn-based oxides: Speciation and reactivity by temperature programmed desorption analysis. <i>Journal of Hazardous Materials</i> , <b>2017</b> , 321, 745-752                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 12.8 | 41  |
| 55 | Mn-Promoted Co3O4/TiO2 as an efficient catalyst for catalytic oxidation of dibromomethane (CH2Br2). <i>Journal of Hazardous Materials</i> , <b>2016</b> , 318, 1-8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 12.8 | 31  |
| 54 | Mn-based perovskite oxides for Hg0 adsorption and regeneration via a temperature swing adsorption (TSA) process. <i>Fuel</i> , <b>2016</b> , 182, 428-436                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1  | 17  |
| 53 | Enhancement of heterogeneous oxidation and adsorption of Hg 0 in a wide temperature window using SnO 2 supported LaMnO 3 perovskite oxide. <i>Chemical Engineering Journal</i> , <b>2016</b> , 292, 123-129                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 14.7 | 27  |
| 52 | Elemental mercury (Hg 0) removal over spinel LiMn 2 O 4 from coal-fired flue gas. <i>Chemical Engineering Journal</i> , <b>2016</b> , 299, 142-149                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.7 | 21  |
| 51 | Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas. <i>Fuel Processing Technology</i> , <b>2016</b> , 149, 23-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 7.2  | 33  |
| 50 | Novel Effective Catalyst for Elemental Mercury Removal from Coal-Fired Flue Gas and the Mechanism Investigation. <i>Environmental Science &amp; Environmental &amp; Envi</i> | 10.3 | 50  |
| 49 | Catalytic oxidation and adsorption of Hg0 over low-temperature NH3-SCR LaMnO3 perovskite oxide from flue gas. <i>Applied Catalysis B: Environmental</i> , <b>2016</b> , 186, 30-40                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21.8 | 99  |
| 48 | An enhancement method for the elemental mercury removal from coal-fired flue gas based on novel discharge activation reactor. <i>Fuel</i> , <b>2016</b> , 171, 59-64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 7.1  | 19  |
| 47 | Size-dependent nanocrystal sorbent for copper removal from water. <i>Chemical Engineering Journal</i> , <b>2016</b> , 284, 565-570                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 14.7 | 25  |
| 46 | Novel effect of SO 2 on selective catalytic oxidation of slip ammonia from coal-fired flue gas over IrO 2 modified Ce <b>Z</b> r solid solution and the mechanism investigation. <i>Fuel</i> , <b>2016</b> , 166, 179-187                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 7.1  | 45  |
| 45 | Enhancement of Ce1\(\mathbb{B}\)SnxO2 support in LaMnO3 for the catalytic oxidation and adsorption of elemental mercury. RSC Advances, 2016, 6, 63559-63567                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 3.7  | 12  |

| 44 | The performance and mechanism for the catalytic oxidation of dibromomethane (CH2Br2) over Co3O4/TiO2 catalysts. <i>RSC Advances</i> , <b>2016</b> , 6, 31181-31190                                                                                          | 3.7  | 12  |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 43 | Ecyclodextrin stabilized magnetic Fe3S4 nanoparticles for efficient removal of Pb(II). <i>Journal of Materials Chemistry A</i> , <b>2015</b> , 3, 15755-15763                                                                                               | 13   | 72  |
| 42 | Different crystal-forms of one-dimensional MnO2 nanomaterials for the catalytic oxidation and adsorption of elemental mercury. <i>Journal of Hazardous Materials</i> , <b>2015</b> , 299, 86-93                                                             | 12.8 | 84  |
| 41 | The performance and mechanism of Ag-doped CeO2/TiO2 catalysts in the catalytic oxidation of gaseous elemental mercury. <i>Catalysis Science and Technology</i> , <b>2015</b> , 5, 2985-2993                                                                 | 5.5  | 20  |
| 40 | MnOx/Graphene for the Catalytic Oxidation and Adsorption of Elemental Mercury. <i>Environmental Science &amp; Environmental Mercury</i> , <b>2015</b> , 49, 6823-30                                                                                         | 10.3 | 151 |
| 39 | Regenerable Ag/graphene sorbent for elemental mercury capture at ambient temperature. <i>Colloids and Surfaces A: Physicochemical and Engineering Aspects</i> , <b>2015</b> , 476, 83-89                                                                    | 5.1  | 32  |
| 38 | Ag-modified AgIIIiO2 as an excellent and durable catalyst for catalytic oxidation of elemental mercury. <i>RSC Advances</i> , <b>2015</b> , 5, 30841-30850                                                                                                  | 3.7  | 25  |
| 37 | Regenerable Sorbent with a High Capacity for Elemental Mercury Removal and Recycling from the Simulated Flue Gas at a Low Temperature. <i>Energy &amp; Description</i> 29, 6187-6196                                                                        | 4.1  | 37  |
| 36 | Magnetic Biochar Decorated with ZnS Nanocrytals for Pb (II) Removal. <i>ACS Sustainable Chemistry and Engineering</i> , <b>2015</b> , 3, 125-132                                                                                                            | 8.3  | 145 |
| 35 | The cooperation of FeSn in a MnOx complex sorbent used for capturing elemental mercury. <i>Fuel</i> , <b>2015</b> , 140, 803-809                                                                                                                            | 7.1  | 37  |
| 34 | Removal of mercury from flue gas from nonferrous metal smelting, by use of mercury chloride solution, and mechanisms of inhibition by sulfur dioxide. <i>Research on Chemical Intermediates</i> , <b>2015</b> , 41, 5889-5905                               | 2.8  | 8   |
| 33 | Co-benefit of Ag and Mo for the catalytic oxidation of elemental mercury. <i>Fuel</i> , <b>2015</b> , 158, 891-897                                                                                                                                          | 7.1  | 24  |
| 32 | Absorption characteristics of elemental mercury in mercury chloride solutions. <i>Journal of Environmental Sciences</i> , <b>2014</b> , 26, 2257-65                                                                                                         | 6.4  | 9   |
| 31 | Competition of selective catalytic reduction and non selective catalytic reduction over MnOx/TiO2 for NO removal: the relationship between gaseous NO concentration and N2O selectivity. <i>Catalysis Science and Technology</i> , <b>2014</b> , 4, 224-232 | 5.5  | 71  |
| 30 | The performance of Ag doped V2O5TiiO2 catalyst on the catalytic oxidation of gaseous elemental mercury. <i>Catalysis Science and Technology</i> , <b>2014</b> , 4, 4036-4044                                                                                | 5.5  | 24  |
| 29 | Investigation on mercury removal method from flue gas in the presence of sulfur dioxide. <i>Journal of Hazardous Materials</i> , <b>2014</b> , 279, 289-95                                                                                                  | 12.8 | 30  |
| 28 | Sn-Mn binary metal oxides as non-carbon sorbent for mercury removal in a wide-temperature window. <i>Journal of Colloid and Interface Science</i> , <b>2014</b> , 428, 121-7                                                                                | 9.3  | 41  |
| 27 | CO2 adsorption performance of ZIF-7 and its endurance in flue gas components. <i>Frontiers of Environmental Science and Engineering</i> , <b>2014</b> , 8, 162-168                                                                                          | 5.8  | 16  |

## (2010-2014)

| 26 | Mechanism of the selective catalytic oxidation of slip ammonia over Ru-modified Ce-Zr complexes determined by in situ diffuse reflectance infrared Fourier transform spectroscopy. <i>Environmental Science &amp; Environmental Scie</i>                 | 10.3 | 61  |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----|
| 25 | Ultraeffective ZnS nanocrystals sorbent for mercury(II) removal based on size-dependent cation exchange. <i>ACS Applied Materials &amp; amp; Interfaces</i> , <b>2014</b> , 6, 18026-32                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 9.5  | 63  |
| 24 | The co-benefit of elemental mercury oxidation and slip ammonia abatement with SCR-Plus catalysts. <i>Fuel</i> , <b>2014</b> , 133, 263-269                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 7.1  | 40  |
| 23 | Removal of elemental mercury with Mn/Mo/Ru/Al2O3 membrane catalytic system. <i>Frontiers of Environmental Science and Engineering</i> , <b>2013</b> , 7, 464-473                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5.8  | 3   |
| 22 | Novel regenerable sorbent based on Zr-Mn binary metal oxides for flue gas mercury retention and recovery. <i>Journal of Hazardous Materials</i> , <b>2013</b> , 261, 206-13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 12.8 | 87  |
| 21 | Improvement of the Activity of Fe2O3 for the Selective Catalytic Reduction of NO with NH3 at High Temperatures: NO Reduction versus NH3 Oxidization. <i>Industrial &amp; Discourse ing Chemistry Research</i> , <b>2013</b> , 52, 5601-5610                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3.9  | 93  |
| 20 | Novel effect of SO2 on the SCR reaction over CeO2: Mechanism and significance. <i>Applied Catalysis B: Environmental</i> , <b>2013</b> , 136-137, 19-28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.8 | 236 |
| 19 | Substitution of WO3 in V2O5/WO3IIiO2 by Fe2O3 for selective catalytic reduction of NO with NH3. <i>Catalysis Science and Technology</i> , <b>2013</b> , 3, 161-168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 5.5  | 81  |
| 18 | Synthesis and characterization of nano-sized MnIIiO2 catalysts and their application to removal of gaseous elemental mercury. <i>Research on Chemical Intermediates</i> , <b>2012</b> , 38, 2511-2522                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 2.8  | 24  |
| 17 | Elemental Mercury Capture from Flue Gas by Magnetic MnHe Spinel: Effect of Chemical Heterogeneity. <i>Industrial &amp; Engineering Chemistry Research</i> , <b>2011</b> , 50, 9650-9656                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3.9  | 91  |
| 16 | Significance of RuO2 modified SCR catalyst for elemental mercury oxidation in coal-fired flue gas. <i>Environmental Science &amp; Environmental Science &amp; En</i> | 10.3 | 114 |
| 15 | Nanosized cation-deficient Fe-Ti spinel: a novel magnetic sorbent for elemental mercury capture from flue gas. <i>ACS Applied Materials &amp; amp; Interfaces</i> , <b>2011</b> , 3, 209-17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.5  | 112 |
| 14 | Gaseous elemental mercury capture from flue gas using magnetic nanosized (Fe3-xMnx)1-D4. <i>Environmental Science &amp; Environmental Science &amp; Environmenta</i> | 10.3 | 139 |
| 13 | Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic MnBe spinel for elemental mercury capture. <i>Applied Catalysis B: Environmental</i> , <b>2011</b> , 101, 698-708                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21.8 | 143 |
| 12 | Capture of gaseous elemental mercury from flue gas using a magnetic and sulfur poisoning resistant sorbent Mn/EFe2O3 at lower temperatures. <i>Journal of Hazardous Materials</i> , <b>2011</b> , 186, 508-15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 12.8 | 179 |
| 11 | Oxidation and stabilization of elemental mercury from coal-fired flue gas by sulfur monobromide. <i>Environmental Science &amp; Environmental Science &amp; Envi</i> | 10.3 | 26  |
| 10 | Catalytic oxidation of elemental mercury over the modified catalyst Mn/alpha-Al2O3 at lower temperatures. <i>Environmental Science &amp; Environmental Scien</i>     | 10.3 | 192 |
| 9  | A novel multi-functional magnetic Fe-Ti-V spinel catalyst for elemental mercury capture and callback from flue gas. <i>Chemical Communications</i> , <b>2010</b> , 46, 8377-9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 5.8  | 52  |

Heterogeneous Reaction Mechanisms and Functional Materials for Elemental Mercury Removal

from Industrial Flue Gas. ACS ES&T Engineering,