Friedrich Hammerschmidt

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8231020/publications.pdf

Version: 2024-02-01

81 papers

1,855 citations

236925 25 h-index 315739 38 g-index

86 all docs 86 does citations

86 times ranked 1264 citing authors

#	Article	lF	Citations
1	Enzymes in organic chemistry, part 1: Enantioselective hydrolysis of \hat{l}_{\pm} -(acyloxy)phosphonates by esterolytic enzymes. Tetrahedron: Asymmetry, 1993, 4, 109-120.	1.8	94
2	Transformation of Arylmethylamines into α-Aminophosphonic Acids via Metalated Phosphoramidates: Rearrangement of Partly Configurationally Stable N-Phosphorylated α-Aminocarbanions. Journal of Organic Chemistry, 2000, 65, 6121-6131.	3.2	86
3	Absolute Konfiguration der (2â€Aminoâ€1â€hydroxyethyl)phosphonsäre aus <i>Acanthamoeba castellanii</i> (Neff) ―Darstellung der Phosphonsäreâ€Analoga von (+)―und (â€)â€Serin. Liebigs Annalen Der Chemie, 1989, 1989, 577-583.	0.8	74
4	Enzymes in organic chemistry, part 2: Lipase-catalysed hydrolysis of 1-acyloxy-2-arylethylphosphonates and synthesis of phosphonic acid analogues of L-phenylalanine and L-tyrosine. Tetrahedron, 1995, 51, 4933-4946.	1.9	66
5	Biosynthesis of natural products with a phosphorus-carbon bond. 7. Synthesis of [1,1-2H2]-, [2,2-2H2]-, (R)- and (S)-[1-2H1](2-hydroxyethyl)phosphonic acid and (R,S)-[1-2H1](1,2-dihydroxyethyl)phosphonic acid and incorporation studies into fosfomycin in Streptomyces fradiae. Journal of Organic Chemistry, 1991. 56, 2364-2370.	3.2	63
6	Biodegradation of Phosphonomycin by Rhizobium huakuii PMY1. Applied and Environmental Microbiology, 1998, 64, 356-358.	3.1	58
7	Determination of absolute configuration of î±-hydroxyphosphonates by 31P NMR spectroscopy of corresponding mosher esters. Tetrahedron, 1994, 50, 10253-10264.	1.9	57
8	Direct liquid chromatographic enantioseparation of chiral \hat{l}_{\pm} - and \hat{l}^2 -aminophosphonic acids employing quinine-derived chiral anion exchangers: determination of enantiomeric excess and verification of absolute configuration. Analytica Chimica Acta, 2000, 404, 169-177.	5.4	57
9	Enzymes in organic chemistry. Part 9:Chemo-enzymatic synthesis of phosphonic acid analogues of l-valine, l-leucine, l-isoleucine, l-methionine and l-1±-aminobutyric acid of high enantiomeric excess. Tetrahedron: Asymmetry, 1999, 10, 1709-1721.	1.8	48
10	Enzymes in organic chemistry. Part 10: Chemo-enzymatic synthesis of l-phosphaserine and l-phosphaisoserine and enantioseparation of amino-hydroxyethylphosphonic acids by non-aqueous capillary electrophoresis with quinine carbamate as chiral ion pair agent. Tetrahedron: Asymmetry, 2000, 11, 2955-2964.	1.8	46
11	New Selective Inhibitors of Steroid 11β-Hydroxylation in the Adrenal Cortex. Synthesis and Structure–Activity Relationship of Potent Etomidate Analogues. Journal of Medicinal Chemistry, 2008, 51, 2244-2253.	6.4	45
12	Crystal structure of PhnZ in complex with substrate reveals a di-iron oxygenase mechanism for catabolism of organophosphonates. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 5171-5176.	7.1	43
13	Biosynthesis of natural products with a P–C bond. Part 8: on the origin of the oxirane oxygen atom of fosfomycin in Streptomyces fradiae. Journal of the Chemical Society Perkin Transactions 1, 1991, , 1993-1996.	0.9	40
14	Preparation of Chiral î±-Oxy-[2H1]methyllithiums of 99% ee and Determination of Their Configurational Stability. Journal of the American Chemical Society, 2007, 129, 914-923.	13.7	40
15	Preparation and Configurational Stability of Chiral Chloro-[D ₁]methyllithiums of 98% Enantiomeric Excess. Journal of the American Chemical Society, 2008, 130, 2329-2335.	13.7	38
16	Biosynthese von Naturstoffen mit einer P Câ€Bindung, V. Das Oxiranâ€Sauerstoffâ€Atom des Fosfomycins entstammt nicht dem Luftâ€Sauerstoff. Liebigs Annalen Der Chemie, 1990, 1990, 1055-1061.	0.8	37
17	Strong versus weak chiral cation exchangers: Comparative evaluation for enantiomer separation of chiral bases by non-aqueous CEC. Journal of Separation Science, 2002, 25, 1269-1283.	2.5	35
18	Preparation of αâ€Aminobenzylphosphonic Acids with a Stereogenic Quaternary Carbon Atom via Microscopically Configurationally Stable αâ€Aminobenzyllithiums. Chemistry - A European Journal, 2008, 14, 8603-8614.	3.3	33

#	Article	IF	CITATIONS
19	Synthesis of chiral, nonracemic α-sulfanylphosphonates and derivatives. Tetrahedron: Asymmetry, 2003, 14, 1829-1836.	1.8	32
20	Enantiopure Chiral (2,4,6-Triisopropylbenzoyl)oxy-[D ₁]methyllithium: Configurational Stability, Reactions, and Mechanistic Studies. Journal of Organic Chemistry, 2009, 74, 2380-2388.	3.2	32
21	Structure and reactivity of hydroxypropylphosphonic acid epoxidase in fosfomycin biosynthesis by a cation- and flavin-dependent mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 14221-14226.	7.1	31
22	Configurational Stability of Oxymethyllithiums as Intermediates in Intramolecular Rearrangements. Chemistry - A European Journal, 2007, 13, 9582-9588.	3.3	31
23	Incorporation ofL-[Methyl-2H3]methionine and 2-[Hydroxy-18O]hydroxyethylphosphonic Acid into Fosfomycin inStreptomyces fradiae—An Unusual Methyl Transfer. Angewandte Chemie International Edition in English, 1994, 33, 341-342.	4.4	30
24	Direct Chemical Synthesis of Chiral Methanol of 98% ee and Its Conversion to [2H1,3H]Methyl Tosylate and [2H1,3H-Methyl]Methionine. Journal of the American Chemical Society, 2005, 127, 13934-13940.	13.7	30
25	ENZYMES IN ORGANIC CHEMISTRY 7. (sup>[1] (/sup> EVALUATION OF HOMOCHIRAL t-BUTYL(PHENYL)PHOSPHINOTHIOIC ACID FOR THE DETERMINATION OF ENANTIOMERIC EXCESSES AND ABSOLUTE CONFIGURATIONS OF α-SUBSTITUTED PHOSPHONATES. Phosphorus, Sulfur and Silicon and the Related Elements. 1998. 140. 79-93.	1.6	25
26	Chemoenzymatic Synthesis of Phosphonic Acid Analogues of <scp>L</scp> â€Lysine, <scp>L</scp> â€Proline, <scp>L</scp> â€Ornithine, and <scp>L</scp> â€Pipecolic Acid of 99 % <i>ee</i> â€" Assignment of Absolute Configuration to (â€")â€Proline. European Journal of Organic Chemistry, 2011, 2011, 1870-1879.	2.4	25
27	Zur Stereochemie der Phosphatâ€Phosphonatâ€Umlagerung. Liebigs Annalen Der Chemie, 1986, 1986, 2053-2064.	0.8	24
28	Metallation of Phosphorylated Aliphatic Alcohols to Configurationally Stable α-Oxyalkyllithium Compounds â^ Use of the Phosphoryl Group as an Activating Group and Electrophile. European Journal of Organic Chemistry, 2000, 2000, 2239-2245.	2.4	24
29	Simultaneous separation of the stereoisomers of 1-amino-2-hydroxy and 2-amino-1-hydroxypropane phosphonic acids by stereoselective capillary electrophoresis employing a quinine carbamate type chiral selector. Electrophoresis, 2001, 22, 1182-1187.	2.4	24
30	<i>C</i> -Methylation Catalyzed by Fom3, a Cobalamin-Dependent Radical <i>S</i> -adenosyl- <scp>l</scp> -methionine Enzyme in Fosfomycin Biosynthesis, Proceeds with Inversion of Configuration. Biochemistry, 2018, 57, 4963-4966.	2.5	24
31	Addition von Dialkylphosphiten und Dialkyl(trimethylsilyl)phosphiten an 2â€(Benzyloxy)propanal Darstellung aller vier stereoisomeren (1,2â€Dihydroxyâ€[1â€ ² H ₁]propyl)phosphonsären aus chiralen Lactaten. Liebigs Annalen Der Chemie. 1991. 1991. 469-475.	0.8	23
32	On the Configurational Stability of Chiral, Nonracemic Fluoro―and lodoâ€{D ₁]Methyllithiums. Chemistry - A European Journal, 2014, 20, 4086-4091.	3.3	22
33	Preparation of Enantiopure Chiral Aminoâ€{D ₁]methyllithium Compounds and Determination of Their Micro―and Macroscopic Configurational Stabilities. Chemistry - A European Journal, 2009, 15, 5729-5739.	3.3	21
34	The Stereochemical Course of the αâ€Hydroxyphosphonate–Phosphate Rearrangement. Chemistry - A European Journal, 2015, 21, 10200-10206.	3.3	21
35	Substrate Tunnel Engineering Aided by X-ray Crystallography and Functional Dynamics Swaps the Function of MIO-Enzymes. ACS Catalysis, 2021, 11, 4538-4549.	11.2	21
36	On the Configurational Stability of Chiral Heteroatomâ€Substituted [D ₁]Methylpalladium Complexes as Intermediates of Stille and Suzuki–Miyaura Crossâ€Coupling Reactions. European Journal of Organic Chemistry, 2013, 2013, 5143-5148.	2.4	19

#	Article	IF	Citations
37	On the Transformation of (S)-2-Hydroxypropylphosphonic Acid into Fosfomycin in Streptomyces fradiae—A Unique Method of Epoxide Ring Formation. ChemBioChem, 2002, 3, 829-835.	2.6	18
38	Studies on the biodegradation of fosfomycin: Growth of Rhizobium huakuii PMY1 on possible intermediates synthesised chemically. Organic and Biomolecular Chemistry, 2009, 7, 1944.	2.8	18
39	THE PHOSPHATE-PHOSPHONATE AND PHOSPHONATE-PHOSPHATE REARRANGEMENTS AND THEIR APPLICATIONS - 7[1]: USE OF <i>t</i> -BUTYL AS PROTECTING GROUP AND SYNTHESIS OF CHIRAL, NONRACEMIC α-HYDROXYPHOSPHONATES. Phosphorus, Sulfur and Silicon and the Related Elements, 2001. 174. 101-118.	1.6	17
40	Indirect Evidence for the Biosynthesis of (1S,2S)-1,2-Epoxypropylphosphonic Acid as a Co-Metabolite of Fosfomycin [(1R,2S)-1,2-Epoxypropylphosphonic Acid]by Streptomyces fradiae. European Journal of Organic Chemistry, 2002, 2002, 1139-1142.	2.4	16
41	An Oxidative Pathway for Microbial Utilization of Methylphosphonic Acid as a Phosphate Source. ACS Chemical Biology, 2019, 14, 735-741.	3.4	16
42	Biosynthese von Naturstoffen mit einer PCâ€Bindung, I. Einbau von <scp>D</scp> â€[6,6â€D ₂]Glucose in (2â€Aminoethyl)phosphonsäre in <i>Tetrahymena thermophila</i> . Liebigs Annalen Der Chemie, 1988, 1988, 531-535.	0.8	15
43	On the Preparation and Determination of Configurational Stability of Chiral Thio- and Bromo[D ₁]methyllithiums. Journal of Organic Chemistry, 2012, 77, 10021-10034.	3.2	14
44	Synthesis and preclinical characterization of 1-(6′-deoxy-6′-[18 F]fluoro-β- d) Tj ETQq0 0 0 rgBT /Overlock assess tumor hypoxia. Bioorganic and Medicinal Chemistry, 2016, 24, 5326-5339.	2 10 Tf 50 4 3.0	467 Td (-allofu 13
45	Stereochemical Course of Methyl Transfer by Cobalamin-Dependent Radical SAM Methyltransferase in Fosfomycin Biosynthesis. Biochemistry, 2018, 57, 2069-2073.	2.5	13
46	Biosynthese von Naturstoffen mit einer PC-Bindung, IX. Synthese und Einbau von (S)- und (R)-2-Hydroxy-[2-2H1]ethylphosphonsÃ u re in Fosfomycin durchStreptomyces fradiae. Liebigs Annalen Der Chemie, 1992, 1992, 553-557.	0.8	12
47	Rearrangement of lithiated S-alkyl O,O-dialkyl thiophosphates: Scope and stereochemistry of the thiophosphate–mercaptophosphonate rearrangement. Organic and Biomolecular Chemistry, 2011, 9, 5220.	2.8	11
48	Câ€"H Bond Cleavage Is Rate-Limiting for Oxidative Câ€"P Bond Cleavage by the Mixed Valence Diiron-Dependent Oxygenase PhnZ. Biochemistry, 2019, 58, 5271-5280.	2.5	11
49	ENZYMES IN ORGANIC CHEMISTRY, $8.<$ sup> $[11sup> PROTEASE-CATALYZED KINETIC RESOLUTION OF \hat{1}\pm-CHLOROACETOXYPHOSPHONATES IN A BIPHASIC SYSTEM. Phosphorus, Sulfur and Silicon and the Related Elements, 1998, 141, 231-238.$	1.6	9
50	On the conversion of structural analogues of (S)-2-hydroxypropylphosphonic acid to epoxides by the final enzyme of fosfomycin biosynthesis in S. fradiae. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 3056-3059.	2.2	9
51	Determination of absolute configuration of the phosphonic acid moiety of fosfazinomycins. Organic and Biomolecular Chemistry, 2013, 11, 7420.	2.8	9
52	[³ H]Metyrapol and 4-[¹³¹ I]Iodometomidate Label Overlapping, but Not Identical, Binding Sites on Rat Adrenal Membranes. Molecular Pharmaceutics, 2013, 10, 1119-1130.	4.6	9
53	Phosphonate–Phosphinate Rearrangement. Journal of Organic Chemistry, 2015, 80, 1082-1091.	3.2	9
54	A Methylidene Group in the Phosphonic Acid Analogue of Phenylalanine Reverses the Enantiopreference of Binding to Phenylalanine Ammoniaâ€Lyases. Advanced Synthesis and Catalysis, 2017, 359, 2109-2120.	4.3	9

#	Article	IF	Citations
55	Phosphonodifluoropyruvate is a mechanism-based inhibitor of phosphonopyruvate decarboxylase from Bacteroides fragilis. Bioorganic and Medicinal Chemistry, 2017, 25, 4368-4374.	3.0	9
56	Biosynthese von Naturstoffen mit einer PCâ€Bindung, IV. Synthese der (<i>R</i>)―und (<i>S</i>)â€(2â€Amino[2â€D ₁]ethyl)phosphonsäre und Hydroxylierung zu (2â€Aminoâ€1â€hydroxyethyl)phosphonsäre in <i>Acanthamoeba castellanii</i> (Neff). Liebigs Annalen Der Chemie, 1988, 1988, 961-964.	0.8	8
57	Chemoenzymatic Synthesis of Stannylated Metomidate as a Precursor for Electrophilic Radiohalogenations? Regioselective Alkylation of Methyl 1H-Imidazole-5-carboxylate [1]. Monatshefte Für Chemie, 2005, 136, 229-239.	1.8	8
58	Conversion of nitriles to 1-aminophosphonic acids and preparation of phosphahomocysteines of high enantiomeric excess. Phosphorus, Sulfur and Silicon and the Related Elements, 2017, 192, 737-744.	1.6	8
59	The α-hydroxyphosphonate-phosphate rearrangement of a noncyclic substrate – some new observations. Organic and Biomolecular Chemistry, 2018, 16, 3672-3680.	2.8	8
60	Biosynthesis of the Fungal Organophosphonate Fosfonochlorin Involves an Iron(II) and 2â€(Oxo)glutarate Dependent Oxacyclase. ChemBioChem, 2022, 23, .	2.6	8
61	Chemical Synthesis of (<i>R</i> _P)- and (<i>S</i> _P)-[¹⁶ 0, ¹⁷ 0, ¹⁸ 0]Phosphoenol Pyruvate. Journal of Organic Chemistry, 2017, 82, 10310-10318.	3.2	7
62	Novel formal synthesis of stereospecifically C-6 deuterated d-glucose employing configurationally stable alkoxymethyllithiums. Tetrahedron, 2010, 66, 591-598.	1.9	6
63	Chemoenzymatic Synthesis of Racemic and Enantiomerically Pure Phosphaaspartic Acid and Phosphaarginine. European Journal of Organic Chemistry, 2017, 2017, 4836-4845.	2.4	6
64	Preparation of Phosphonic Acid Analogues of Proline and Proline Analogues and Their Biological Evaluation as Î' ¹ -Pyrroline-5-carboxylate Reductase Inhibitors. ACS Omega, 2018, 3, 4441-4452.	3.5	6
65	Improved Synthesis of Racemate and Enantiomers of Taniguchi Lactone and Conversion of Their C–C Double Bonds into Triple Bonds. Synthesis, 2018, 50, 651-657.	2.3	6
66	Overall Retention of Methyl Stereochemistry during B12-Dependent Radical SAM Methyl Transfer in Fosfomycin Biosynthesis. Biochemistry, 2021, 60, 1587-1596.	2.5	6
67	Improved Synthesis of No-Carrier-Added [*I]MIBG and Its Precursor. Synthesis, 2012, 44, 3387-3391.	2.3	5
68	Radiosynthesis of [1241]Iodometomidate and Biological Evaluation Using Small-Animal PET. Molecular Imaging and Biology, 2014, 16, 317-321.	2.6	5
69	2-Nitroimidazole-Furanoside Derivatives for Hypoxia Imagingâ€"Investigation of Nucleoside Transporter Interaction, 18F-Labeling and Preclinical PET Imaging. Pharmaceuticals, 2019, 12, 31.	3.8	5
70	Essential Functional Interplay of the Catalytic Groups in Acid Phosphatase. ACS Catalysis, 2022, 12, 3357-3370.	11.2	5
71	Studies on the Biodegradation of Fosfomycin: Synthesis of ¹³ Câ€Labeled Intermediates, Feeding Experiments with <i>Rhizobium huakuii</i> PMY1, and Isolation of Labeled Amino Acids from Cell Mass by HPLC. Chemistry - A European Journal, 2011, 17, 13341-13348.	3.3	4
72	[18 F]Fluoro-azomycin- $2\hat{A}$ -deoxy- \hat{I}^2 - d -ribofuranoside \hat{a} \in "A new imaging agent for tumor hypoxia in comparison with [18 F]FAZA. Nuclear Medicine and Biology, 2016, 43, 759-769.	0.6	4

#	Article	IF	CITATIONS
73	On the rearrangement of N-aryl-N-Boc-phosphoramidates to N-Boc-protected o-aminoarylphosphonates. Monatshefte Fýr Chemie, 2018, 149, 87-98.	1.8	4
74	Formal synthesis of $\langle i \rangle P \langle i \rangle$ -chiral [$\langle sup \rangle 16 \langle sup \rangle O, \langle sup \rangle 17 \langle sup \rangle O, \langle sup \rangle 18 \langle sup \rangle O]$ phosphoenol pyruvates by means of the α-hydroxyphosphonate-phosphate rearrangement. Phosphorus, Sulfur and Silicon and the Related Elements, 2018, 193, 515-519.	1.6	3
75	Chemoenzymatic Synthesis of $\hat{I}\pm$ -Aminophosphonic Acids. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 439-439.	1.6	2
76	Phosphate-Phosphonate Rearrangement of Aliphatic Phosphates. Phosphorus, Sulfur and Silicon and the Related Elements, 1999, 147, 377-377.	1.6	2
77	Synthesis of bipyridine analogues of metomidate for conjugate formation with the 99mTc(I)-tricarbonyl complex. Monatshefte Für Chemie, 2010, 141, 437-443.	1.8	1
78	Efficient preparation of 2-nitroimidazole nucleosides as precursors for hypoxia PET tracers. Monatshefte Für Chemie, 2017, 148, 83-90.	1.8	1
79	Preparation of Nonradioactive Standards and a Precursor for a Hypoxia 18F PET Tracer Derived from 1-(β-d-Galactopyranosyl)-2-nitroimidazole. Synthesis, 2017, 49, 2933-2938.	2.3	1
80	Synthesis of Chiral, Nonracemic α-Sulfanylphosphonates and Derivatives ChemInform, 2003, 34, no.	0.0	0
81	Chemoenzymatic Synthesis of Stannylated Metomidate as a Precursor for Electrophilic Radiohalogenations — Regioselective Alkylation of Methyl 1H-Imidazole-5-carboxylate ChemInform, 2005, 36, no.	0.0	0