Richard G Vile

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230910/publications.pdf

Version: 2024-02-01

115 papers 5,486 citations

43 h-index 72 g-index

156 all docs

156 docs citations

156 times ranked 4494 citing authors

#	Article	IF	CITATIONS
1	The spike protein of SARS-CoV-2 induces heme oxygenase-1: Pathophysiologic implications. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2022, 1868, 166322.	3.8	15
2	CD4 T cell dynamics shape the immune response to combination oncolytic herpes virus and BRAF inhibitor therapy for melanoma., 2022, 10, e004410.		3
3	Oncolytic virus–mediated expansion of dual-specific CAR T cells improves efficacy against solid tumors in mice. Science Translational Medicine, 2022, 14, eabn2231.	12.4	70
4	Phase I trial of sargramostim/pelareorep therapy in pediatric patients with recurrent or refractory high-grade brain tumors. Neuro-Oncology Advances, 2022, 4, .	0.7	7
5	Oncolytic reovirus-mediated recruitment of early innate immune responses reverses immunotherapy resistance in prostate tumors. Molecular Therapy - Oncolytics, 2021, 20, 434-446.	4.4	17
6	APOBEC and Cancer Viroimmunotherapy: Thinking the Unthinkable. Clinical Cancer Research, 2021, 27, 3280-3290.	7.0	14
7	Parking CAR T Cells in Tumours: Oncolytic Viruses as Valets or Vandals?. Cancers, 2021, 13, 1106.	3.7	16
8	Oncolytic virotherapy induced CSDE1 neo-antigenesis restricts VSV replication but can be targeted by immunotherapy. Nature Communications, 2021, 12, 1930.	12.8	7
9	Modular network mechanism of CCN1-associated resistance to HSV-1-derived oncolytic immunovirotherapies for glioblastomas. Scientific Reports, 2021, 11, 11198.	3.3	4
10	Inactivation of Replication-Competent Vesicular Stomatitis Virus as SARS-CoV-2 Surrogate on Common Surfaces by Disinfectants. International Journal of Environmental Research and Public Health, 2021, 18, 7714.	2.6	2
11	Antiviral antibody responses to systemic administration of an oncolytic RNA virus: the impact of standard concomitant anticancer chemotherapies., 2021, 9, e002673.		5
12	Generation of a Tumor-Specific Chemokine Gradient Using Oncolytic Vesicular Stomatitis Virus Encoding CXCL9. Molecular Therapy - Oncolytics, 2020, 16, 63-74.	4.4	24
13	Combining BRAF inhibition with oncolytic herpes simplex virus enhances the immune-mediated antitumor therapy of BRAF-mutant thyroid cancer. , 2020, 8, e000698.		11
14	Vesicular Stomatitis Virus Encoding a Destabilized Tumor Antigen Improves Activation of Anti-tumor T Cell Responses. Molecular Therapy, 2020, 28, 2540-2552.	8.2	4
15	Ad-CD40L mobilizes CD4 T cells for the treatment of brainstem tumors. Neuro-Oncology, 2020, 22, 1757-1770.	1.2	7
16	Oncolytic virus-derived type I interferon restricts CAR T cell therapy. Nature Communications, 2020, 11, 3187.	12.8	61
17	APOBEC3B-mediated corruption of the tumor cell immunopeptidome induces heteroclitic neoepitopes for cancer immunotherapy. Nature Communications, 2020, 11 , 790.	12.8	47
18	Diverse immunotherapies can effectively treat syngeneic brainstem tumors in the absence of overt toxicity., 2019, 7, 188.		12

#	Article	IF	CITATIONS
19	Suboptimal T-cell Therapy Drives a Tumor Cell Mutator Phenotype That Promotes Escape from First-Line Treatment. Cancer Immunology Research, 2019, 7, 828-840.	3.4	13
20	Oncolytic Immunotherapy for Bladder Cancer Using Coxsackie A21 Virus. Molecular Therapy - Oncolytics, 2018, 9, 1-12.	4.4	49
21	Genetically modified lentiviruses that preserve microvascular function protect against late radiation damage in normal tissues. Science Translational Medicine, 2018, 10, .	12.4	15
22	Intravenous delivery of oncolytic reovirus to brain tumor patients immunologically primes for subsequent checkpoint blockade. Science Translational Medicine, 2018, 10, .	12.4	288
23	The Immune System in Oncolytic Immunovirotherapy: Gospel, Schism and Heresy. Molecular Therapy, 2018, 26, 942-946.	8.2	9
24	Oncolytic reovirus as a combined antiviral and anti-tumour agent for the treatment of liver cancer. Gut, 2018, 67, 562-573.	12.1	49
25	APOBEC3 Mediates Resistance to Oncolytic Viral Therapy. Molecular Therapy - Oncolytics, 2018, 11, 1-13.	4.4	14
26	Antibody-Neutralized Reovirus Is Effective in Oncolytic Virotherapy. Cancer Immunology Research, 2018, 6, 1161-1173.	3.4	53
27	Ad5NULL-A20: A Tropism-Modified, $\hat{l}\pm v\hat{l}^26$ Integrin-Selective Oncolytic Adenovirus for Epithelial Ovarian Cancer Therapies. Clinical Cancer Research, 2018, 24, 4215-4224.	7.0	36
28	Inhibitory Receptors Induced by VSV Viroimmunotherapy Are Not Necessarily Targets for Improving Treatment Efficacy. Molecular Therapy, 2017, 25, 962-975.	8.2	22
29	Oncolytic Herpes Simplex Virus Inhibits Pediatric Brain Tumor Migration and Invasion. Molecular Therapy - Oncolytics, 2017, 5, 75-86.	4.4	22
30	Infectious Optimism following the 10th International Oncolytic Virus Meeting. Molecular Therapy - Oncolytics, 2017, 7, 12-16.	4.4	2
31	Subversion of NK-cell and TNFα Immune Surveillance Drives Tumor Recurrence. Cancer Immunology Research, 2017, 5, 1029-1045.	3.4	22
32	Sickle Cells Abolish Melanoma Tumorigenesis in Hemoglobin SS Knockin Mice and Augment the Tumoricidal Effect of Oncolytic Virus In Vivo. Frontiers in Oncology, 2016, 6, 166.	2.8	7
33	Immunogenicity of self tumor associated proteins is enhanced through protein truncation. Molecular Therapy - Oncolytics, 2016, 3, 16030.	4.4	3
34	Socializing Individualized T-Cell Cancer Immunotherapy. Molecular Therapy, 2016, 24, 1170-1173.	8.2	1
35	Combination viroimmunotherapy with checkpoint inhibition to treat glioma, based on location-specific tumor profiling. Neuro-Oncology, 2016, 18, 518-527.	1.2	57
36	Combination Therapy With Reovirus and Anti-PD-1 Blockade Controls Tumor Growth Through Innate and Adaptive Immune Responses. Molecular Therapy, 2016, 24, 166-174.	8.2	161

3

#	Article	IF	Citations
37	Harnessing the Power of Onco-Immunotherapy with Checkpoint Inhibitors. Viruses, 2015, 7, 5889-5901.	3.3	19
38	BRAF- and MEK-Targeted Small Molecule Inhibitors Exert Enhanced Antimelanoma Effects in Combination With Oncolytic Reovirus Through ER Stress. Molecular Therapy, 2015, 23, 931-942.	8.2	44
39	Mutated BRAF Emerges as a Major Effector of Recurrence in a Murine Melanoma Model After Treatment With Immunomodulatory Agents. Molecular Therapy, 2015, 23, 845-856.	8.2	11
40	Definitive Management of Oligometastatic Melanoma in a Murine Model Using CombinedÂAblative Radiation Therapy andÂViralÂlmmunotherapy. International Journal of Radiation Oncology Biology Physics, 2015, 93, 577-587.	0.8	17
41	Progress in clinical oncolytic virus-based therapy for hepatocellular carcinoma. Journal of General Virology, 2015, 96, 1533-1550.	2.9	30
42	Trick and treat. Oncolmmunology, 2014, 3, e27811.	4.6	0
43	Cytokine Conditioning Enhances Systemic Delivery and Therapy of an Oncolytic Virus. Molecular Therapy, 2014, 22, 1851-1863.	8.2	60
44	How To Train Your Oncolytic Virus: the Immunological Sequel. Molecular Therapy, 2014, 22, 1881-1884.	8.2	6
45	The Profile of Tumor Antigens Which Can be Targeted by Immunotherapy Depends Upon the Tumor's Anatomical Site. Molecular Therapy, 2014, 22, 1936-1948.	8.2	14
46	Detecting and targeting tumor relapse by its resistance to innate effectors at early recurrence. Nature Medicine, 2013, 19, 1625-1631.	30.7	52
47	Functional Cloning of Recurrence-specific Antigens Identifies Molecular Targets to Treat Tumor Relapse. Molecular Therapy, 2013, 21, 1507-1516.	8.2	35
48	The Efficacy Versus Toxicity Profile of Combination Virotherapy and TLR Immunotherapy Highlights the Danger of Administering TLR Agonists to Oncolytic Virus-treated Mice. Molecular Therapy, 2013, 21, 348-357.	8.2	33
49	Systemic Combination Virotherapy for Melanoma with Tumor Antigen-Expressing Vesicular Stomatitis Virus and Adoptive T-cell Transfer. Cancer Research, 2012, 72, 4753-4764.	0.9	52
50	Phase II Trial of Intravenous Administration of Reolysin® (Reovirus Serotype-3-dearing Strain) in Patients with Metastatic Melanoma. Molecular Therapy, 2012, 20, 1998-2003.	8.2	135
51	Adoptive Transfer of Cytotoxic T Lymphocytes Targeting Two Different Antigens Limits Antigen Loss and Tumor Escape. Human Gene Therapy, 2012, 23, 1054-1064.	2.7	34
52	Cell Carriage, Delivery, and Selective Replication of an Oncolytic Virus in Tumor in Patients. Science Translational Medicine, 2012, 4, 138ra77.	12.4	142
53	Using virally expressed melanoma cDNA libraries to identify tumor-associated antigens that cure melanoma. Nature Biotechnology, 2012, 30, 337-343.	17.5	98
54	Adoptive T cell therapy promotes the emergence of genomically altered tumor escape variants. International Journal of Cancer, 2012, 131, 844-854.	5.1	47

#	Article	IF	CITATIONS
55	Broad antigenic coverage induced by vaccination with virus-based cDNA libraries cures established tumors. Nature Medicine, 2011, 17, 854-859.	30.7	86
56	Pro-inflammatory cytokine/chemokine production by reovirus treated melanoma cells is PKR/NF-κB mediated and supports innate and adaptive anti-tumour immune priming. Molecular Cancer, 2011, 10, 20.	19.2	64
57	VSV Oncolytic Virotherapy in the B16 Model Depends Upon Intact MyD88 Signaling. Molecular Therapy, 2011, 19, 150-158.	8.2	59
58	Vesicular Stomatitis Virus-induced Immune Suppressor Cells Generate Antagonism Between Intratumoral Oncolytic Virus and Cyclophosphamide. Molecular Therapy, 2011, 19, 140-149.	8.2	30
59	An Intravenous Stimulus Package for Oncolytic Virotherapy. Molecular Therapy, 2011, 19, 1930-1932.	8.2	4
60	Precise Scheduling of Chemotherapy Primes VEGF-producing Tumors for Successful Systemic Oncolytic Virotherapy. Molecular Therapy, 2011, 19, 1802-1812.	8.2	25
61	Activating Systemic T-Cell Immunity Against Self Tumor Antigens to Support Oncolytic Virotherapy with Vesicular Stomatitis Virus. Human Gene Therapy, 2011, 22, 1343-1353.	2.7	70
62	Safety Studies on Intrahepatic or Intratumoral Injection of Oncolytic Vesicular Stomatitis Virus Expressing Interferon- \hat{l}^2 in Rodents and Nonhuman Primates. Human Gene Therapy, 2010, 21, 451-462.	2.7	62
63	REO-10: A Phase I Study of Intravenous Reovirus and Docetaxel in Patients with Advanced Cancer. Clinical Cancer Research, 2010, 16, 5564-5572.	7.0	120
64	Interference of CD40L-Mediated Tumor Immunotherapy by Oncolytic Vesicular Stomatitis Virus. Human Gene Therapy, 2010, 21, 439-450.	2.7	74
65	Oncolytic Viruses: Now Interviewing for the All-Star Game. Molecular Therapy, 2010, 18, 866-868.	8.2	1
66	Type III IFN Interleukin-28 Mediates the Antitumor Efficacy of Oncolytic Virus VSV in Immune-Competent Mouse Models of Cancer. Cancer Research, 2010, 70, 4539-4549.	0.9	94
67	Antiangiogenic cancer therapy combined with oncolytic virotherapy leads to regression of established tumors in mice. Journal of Clinical Investigation, 2010, 120, 1551-1560.	8.2	71
68	The Case of Oncolytic Viruses Versus the Immune System: Waiting on the Judgment of Solomon. Human Gene Therapy, 2009, 20, 1119-1132.	2.7	170
69	Reciprocal Human Dendritic Cell–Natural Killer Cell Interactions Induce Antitumor Activity Following Tumor Cell Infection by Oncolytic Reovirus. Journal of Immunology, 2009, 183, 4312-4321.	0.8	69
70	Expression of IFN- \hat{l}^2 Enhances Both Efficacy and Safety of Oncolytic Vesicular Stomatitis Virus for Therapy of Mesothelioma. Cancer Research, 2009, 69, 7713-7720.	0.9	96
71	Immune-Mediated Antitumor Activity of Reovirus Is Required for Therapy and Is Independent of Direct Viral Oncolysis and Replication. Clinical Cancer Research, 2009, 15, 4374-4381.	7.0	150
72	Cell Carriers for Oncolytic Viruses: Fed Ex for Cancer Therapy. Molecular Therapy, 2009, 17, 1667-1676.	8.2	148

#	Article	IF	Citations
73	Oncolytic viruses: a novel form of immunotherapy. Expert Review of Anticancer Therapy, 2008, 8, 1581-1588.	2.4	154
74	Reovirus Activates Human Dendritic Cells to Promote Innate Antitumor Immunity. Journal of Immunology, 2008, 180, 6018-6026.	0.8	163
75	Exploiting synergies between radiation and oncolytic viruses. Current Opinion in Molecular Therapeutics, 2008, 10, 362-70.	2.8	26
76	Induction of hsp70-Mediated Th17 Autoimmunity Can Be Exploited as Immunotherapy for Metastatic Prostate Cancer. Cancer Research, 2007, 67, 11970-11979.	0.9	83
77	Oncolytic Immunovirotherapy for Melanoma Using Vesicular Stomatitis Virus. Cancer Research, 2007, 67, 2840-2848.	0.9	241
78	Unbiased selection of bone marrow derived cells as carriers for cancer gene therapy. Journal of Gene Medicine, 2007, 9, 927-937.	2.8	4
79	Virus smuggling, tax evasion and tumor assassination. Nature Medicine, 2006, 12, 507-509.	30.7	8
80	Tumor-targeted, systemic delivery of therapeutic viral vectors using hitchhiking on antigen-specific T cells. Nature Medicine, 2005, 11, 1073-1081.	30.7	137
81	Potent Selection of Antigen Loss Variants of B16 Melanoma following Inflammatory Killing of Melanocytes In vivo. Cancer Research, 2005, 65, 2009-2017.	0.9	78
82	Cells as Vehicles for Cancer Gene Therapy: The Missing Link Between Targeted Vectors and Systemic Delivery?. Human Gene Therapy, 2002, 13, 1263-1280.	2.7	79
83	The oncolytic virotherapy treatment platform for cancer: Unique biological and biosafety points to consider. Cancer Gene Therapy, 2002, 9, 1062-1067.	4.6	76
84	Tumor antigen–specific induction of transcriptionally targeted retroviral vectors from chimeric immune receptor–modified T cells. Nature Biotechnology, 2002, 20, 256-263.	17.5	30
85	Cancer Gene Therapy: Part 1. Vector Development and Regulation of Gene Expression. Clinical Oncology, 2002, 14, 3-16.	1.4	9
86	Enhancing the efficacy of a weak allogeneic melanoma vaccine by viral fusogenic membrane glycoprotein-mediated tumor cell-tumor cell fusion. Cancer Research, 2002, 62, 5495-504.	0.9	72
87	Use of Viral Fusogenic Membrane Glycoproteins as Novel Therapeutic Transgenes in Gliomas. Human Gene Therapy, 2001, 12, 811-821.	2.7	93
88	Transcriptional control: an essential component of cancer gene therapy strategies?. Advanced Drug Delivery Reviews, 2000, 44, 167-184.	13.7	51
89	Cancer gene therapy: developments to 2000. Expert Opinion on Investigational Drugs, 2000, 9, 2799-2813.	4.1	6
90	Apoptosis or necrosis for tumor immunotherapy: what's in a name?. Journal of Molecular Medicine, 1999, 77, 824-833.	3.9	102

#	Article	IF	CITATIONS
91	Tumor immunogenicity is determined by the mechanism of cell death via induction of heat shock protein expression. Nature Medicine, 1998, 4, 581-587.	30.7	428
92	A marriage of viral vectors. Nature Biotechnology, 1997, 15, 840-841.	17.5	6
93	Generation of an anti-tumour immune response in a non-immunogenic tumour: HSVtk killing in vivo stimulates a mononuclear cell infiltrate and a Th1-like profile of intratumoural cytokine expression. International Journal of Cancer, 1997, 71, 267-274.	5.1	175
94	Tissue-Specific Gene Expression from Mo-MLV Retroviral Vectors with Hybrid LTRs Containing the Murine Tyrosinase Enhancer/Promoter. Virology, 1995, 214, 307-313.	2.4	68
95	Gene-Directed Enzyme Prodrug Therapy. , 0, , 255-276.		1
96	Lentiviral Vectors for Cancer Gene Therapy., 0,, 83-94.		0
97	Oncolytic Herpes Simplex Viruses. , 0, , 115-137.		4
98	Newcastle Disease Virus: A Promising Vector for Viral Therapy of Cancer., 0,, 171-186.		2
99	Vesicular Stomatitis Virus. , 0, , 187-203.		1
100	Application of HSV-1 Vectors to the Treatment of Cancer., 0,, 19-53.		1
101	Chemoprotective Gene Delivery. , 0, , 377-391.		2
102	Adeno-Associated Virus., 0,, 55-68.		1
103	Adenoviruses., 0,, 1-17.		0
104	Measles as an Oncolytic Virus. , 0, , 205-215.		0
105	Tumour-Suppressor Gene Therapy. , 0, , 229-239.		0
106	RNA Interference and Dominant Negative Approaches. , 0, , 241-254.		0
107	Immunomodulatory Gene Therapy. , 0, , 277-294.		0
108	Antiangiogenic Gene Delivery., 0,, 295-312.		0

#	Article	IF	Citations
109	Radiosensitization in Viral Gene Therapy. , 0, , 313-326.		O
110	Radioisotope Delivery., 0,, 327-340.		O
111	Radioprotective Gene Therapy: Current Status and Future Goals. , 0, , 341-375.		O
112	Retroviruses., 0,, 69-81.		0
113	Poxviruses as Immunomodulatory Cancer Therapeutics. , 0, , 95-114.		O
114	Selective Tumour Cell Cytotoxicity by Reoviridae– Preclinical Evidence and Clinical Trial Results. , 0, , 139-150.		0
115	Oncolytic Vaccinia. , 0, , 151-169.		O