Ojo O Fatoba

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230792/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Pharmaceuticals, endocrine disruptors, personal care products, nanomaterials and perfluorinated pollutants: a review. Environmental Chemistry Letters, 2016, 14, 27-49.	16.2	329
2	A Review of Pharmaceuticals and Endocrine-Disrupting Compounds: Sources, Effects, Removal, and Detections. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	234
3	A Review of Combined Advanced Oxidation Technologies for the Removal of Organic Pollutants from Water. Water, Air, and Soil Pollution, 2014, 225, 1.	2.4	176
4	Synthesis of zeolites from coal fly ash using mine waters. Minerals Engineering, 2013, 53, 9-15.	4.3	73
5	Leaching characteristics of selected South African fly ashes: Effect of pH on the release of major and trace species. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2009, 44, 206-220.	1.7	62
6	Degradation of organic pollutants and microorganisms from wastewater using different dielectric barrier discharge configurations—a critical review. Environmental Science and Pollution Research, 2015, 22, 18345-18362.	5.3	53
7	A critical review on ozone and co-species, generation and reaction mechanisms in plasma induced by dielectric barrier discharge technologies for wastewater remediation. Journal of Environmental Chemical Engineering, 2021, 9, 105758.	6.7	50
8	Influence of aluminium source on the crystal structure and framework coordination of Al and Si in fly ash-based zeolite NaA. Powder Technology, 2017, 306, 17-25.	4.2	47
9	Removal of Pharmaceutical Residues from Water and Wastewater Using Dielectric Barrier Discharge Methods—A Review. International Journal of Environmental Research and Public Health, 2021, 18, 1683.	2.6	45
10	Transformation of South African coal fly ash into ZSM-5 zeolite and its application as an MTO catalyst. Comptes Rendus Chimie, 2017, 20, 78-86.	0.5	38
11	Distributional Fate of Elements during the Synthesis of Zeolites from South African Coal Fly Ash. Materials, 2014, 7, 3305-3318.	2.9	21
12	Spectroscopic Measurements of Dissolved O3, H2O2 and OH Radicals in Double Cylindrical Dielectric Barrier Discharge Technology: Treatment of Methylene Blue Dye Simulated Wastewater. Plasma, 2020, 3, 59-91.	1.8	17
13	Degradation of 2-Nitrophenol by Dielectric Barrier Discharge System: The Influence of Carbon Doped TiO2 Photocatalyst Supported on Stainless Steel Mesh. Plasma Chemistry and Plasma Processing, 2017, 37, 1343-1373.	2.4	15
14	Effect of Calcination Time on the Physicochemical Properties and Photocatalytic Performance of Carbon and Nitrogen Co-Doped TiO2 Nanoparticles. Catalysts, 2020, 10, 847.	3.5	13
15	Leaching and antimicrobial properties of silver nanoparticles loaded onto natural zeolite clinoptilolite by ion exchange and wet impregnation. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 97-104.	1.7	12
16	Synthesis of zeolite NaA membrane from fused fly ash extract. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2016, 51, 348-356.	1.7	11
17	Degradation of bisphenol-A by dielectric barrier discharge system: influence of polyethylene glycol stabilized nano zero valent iron particles. Advances in Natural Sciences: Nanoscience and Nanotechnology, 2017, 8, 035013.	1.5	10
18	Synthesis, characterization and photocatalytic activity of Ag metallic particles deposited carbon-doped TiO2 nanocomposites supported on stainless steel mesh. Journal of Sol-Gel Science and Technology, 2017, 83, 207-222.	2.4	7

Οјо Ο Γάτοβα

#	Article	IF	CITATIONS
19	Fly ash-brine interactions: Removal of major and trace elements from brine. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2011, 46, 1648-1666.	1.7	6
20	Long-term brine impacted fly ash. Part 1: chemical and mineralogical composition of the ash residues. International Journal of Environmental Science and Technology, 2015, 12, 551-562.	3.5	4
21	Laboratory Study on the Mobility of Major Species in Fly Ash–Brine Co-disposal Systems: Up-flow Percolation Test. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	1
22	Long-term brine impacted fly ash, Part II: Mobility of major species in the ash residues. International Journal of Environmental Science and Technology, 2014, 11, 1641-1652.	3.5	1