
Cong Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230785/publications.pdf Version: 2024-02-01

CONCLU

#	Article	IF	CITATIONS
1	Introduction to Particles in Indoor Air. , 2022, , 1-13.		1
2	Seasonal and diurnal patterns of outdoor formaldehyde and impacts on indoor environments and health. Environmental Research, 2022, 205, 112550.	7.5	17
3	A new PM2.5-based PM-up method to measure non-mechanical ventilation rate in buildings. Journal of Building Engineering, 2022, 52, 104351.	3.4	2
4	Emission characteristics of formaldehyde from natural gas combustion and effects of hood exhaust in Chinese kitchens. Science of the Total Environment, 2022, 838, 156614.	8.0	9
5	Effect of particulate iron on tracking indoor PM _{2.5} of outdoor origin: A case study in Nanjing, China. Indoor and Built Environment, 2021, 30, 711-723.	2.8	8
6	A new PM2.5-based CADR method to measure air infiltration rate of buildings. Building Simulation, 2021, 14, 693-700.	5.6	8
7	Comparison of indoor and outdoor oxidative potential of PM2.5: pollution levels, temporal patterns, and key constituents. Environment International, 2021, 155, 106684.	10.0	22
8	Outdoor benzene highly impacts indoor concentrations globally. Science of the Total Environment, 2020, 720, 137640.	8.0	27
9	Ambient Particulate Air Pollution and Daily Mortality in 652 Cities. New England Journal of Medicine, 2019, 381, 705-715.	27.0	978
10	Evaluation of a steady-state method to estimate indoor PM2.5 concentration of outdoor origin. Building and Environment, 2019, 161, 106243.	6.9	17
11	Outdoor formaldehyde matters and substantially impacts indoor formaldehyde concentrations. Building and Environment, 2019, 158, 145-150.	6.9	40
12	Redistribution of PM _{2.5} â€associated nitrate and ammonium during outdoorâ€ŧoâ€indoor transport. Indoor Air, 2019, 29, 460-468.	4.3	19
13	Relations between indoor and outdoor PM2.5 and constituent concentrations. Frontiers of Environmental Science and Engineering, 2019, 13, 1.	6.0	34
14	Particle/Gas Partitioning of Phthalates to Organic and Inorganic Airborne Particles in the Indoor Environment. Environmental Science & Technology, 2018, 52, 3583-3590.	10.0	42
15	Influence of natural ventilation rate on indoor PM2.5 deposition. Building and Environment, 2018, 144, 357-364.	6.9	62
16	Potential role of intraparticle diffusion in dynamic partitioning of secondary organic aerosols. Atmospheric Pollution Research, 2018, 9, 1131-1136.	3.8	8
17	Linked Response of Aerosol Acidity and Ammonia to SO ₂ and NO _{<i>x</i>} Emissions Reductions in the United States. Environmental Science & Technology, 2018, 52, 9861-9873.	10.0	38
18	Exposure to SVOCs from Inhaled Particles: Impact of Desorption. Environmental Science & Technology, 2017, 51, 6220-6228.	10.0	28

Cong Liu

#	Article	IF	CITATIONS
19	Air quality modeling for accountability research: Operational, dynamic, and diagnostic evaluation. Atmospheric Environment, 2017, 166, 551-565.	4.1	27
20	Influence of airborne particles on convective mass transfer of SVOCs on flat surfaces: Novel insight and estimation formula. International Journal of Heat and Mass Transfer, 2017, 115, 127-136.	4.8	16
21	Responses in Ozone and Its Production Efficiency Attributable to Recent and Future Emissions Changes in the Eastern United States. Environmental Science & Technology, 2017, 51, 13797-13805.	10.0	16
22	Evaluating the effectiveness of air quality regulations: A review of accountability studies and frameworks. Journal of the Air and Waste Management Association, 2017, 67, 144-172.	1.9	62
23	Simplifying analysis of sorption of SVOCs to particles: Lumped parameter method and application condition. International Journal of Heat and Mass Transfer, 2016, 99, 402-408.	4.8	12
24	Digital image correlation measurement of the bond–slip relationship between fiber-reinforced polymer sheets and concrete substrate. Journal of Reinforced Plastics and Composites, 2014, 33, 1590-1603.	3.1	26
25	The impact of mass transfer limitations on size distributions of particle associated SVOCs in outdoor and indoor environments. Science of the Total Environment, 2014, 497-498, 401-411.	8.0	40
26	Analysis of the Dynamic Interaction Between SVOCs and Airborne Particles. Aerosol Science and Technology, 2013, 47, 125-136.	3.1	134
27	A general analytical model for formaldehyde and VOC emission/sorption in single-layer building materials and its application in determining the characteristic parameters. Atmospheric Environment, 2012, 47, 288-294.	4.1	50
28	Role of aerosols in enhancing SVOC flux between air and indoor surfaces and its influence on exposure. Atmospheric Environment, 2012, 55, 347-356.	4.1	93
29	The influence of aerosol dynamics on indoor exposure to airborne DEHP. Atmospheric Environment, 2010 44 1952-1959	4.1	54