
Karin Agnes Maria Jandeleit-Dahm

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230751/publications.pdf

Version: 2024-02-01

Karin Agnes Maria

#	Article	IF	CITATIONS
1	Diabetes and Kidney Disease: Role of Oxidative Stress. Antioxidants and Redox Signaling, 2016, 25, 657-684.	5.4	410
2	Post-Stroke Inhibition of Induced NADPH Oxidase Type 4 Prevents Oxidative Stress and Neurodegeneration. PLoS Biology, 2010, 8, e1000479.	5.6	377
3	Macrophage Polarization in Obesity and Type 2 Diabetes: Weighing Down Our Understanding of Macrophage Function?. Frontiers in Immunology, 2014, 5, 470.	4.8	227
4	Transforming growth factor-β1-mediated renal fibrosis is dependent on the regulation of transforming growth factor receptor 1 expression by let-7b. Kidney International, 2014, 85, 352-361.	5.2	153
5	Renoprotective effects of a novel Nox1/4 inhibitor in a mouse model of TypeÂ2 diabetes. Clinical Science, 2013, 124, 191-202.	4.3	142
6	Imatinib Attenuates Diabetic Nephropathy in Apolipoprotein E-Knockout Mice. Journal of the American Society of Nephrology: JASN, 2005, 16, 363-373.	6.1	121
7	NADPH Oxidase Nox5 Accelerates Renal Injury in Diabetic Nephropathy. Diabetes, 2017, 66, 2691-2703.	0.6	119
8	A causal link between oxidative stress and inflammation in cardiovascular and renal complications of diabetes. Clinical Science, 2018, 132, 1811-1836.	4.3	114
9	Role of Nox2 in diabetic kidney disease. American Journal of Physiology - Renal Physiology, 2013, 304, F840-F848.	2.7	84
10	Specific NLRP3 Inhibition Protects Against Diabetes-Associated Atherosclerosis. Diabetes, 2021, 70, 772-787.	0.6	84
11	Dicarbonyl Stress in the Absence of Hyperglycemia Increases Endothelial Inflammation and Atherogenesis Similar to That Observed in Diabetes. Diabetes, 2014, 63, 3915-3925.	0.6	74
12	Lipoxins Protect Against Inflammation in Diabetes-Associated Atherosclerosis. Diabetes, 2018, 67, 2657-2667.	0.6	60
13	Cardiovascular Disease and Diabetic Kidney Disease. Seminars in Nephrology, 2018, 38, 217-232.	1.6	52
14	The emerging role of NADPH oxidase NOX5Âin vascular disease. Clinical Science, 2017, 131, 981-990.	4.3	51
15	Lipoxins Regulate the Early Growth Response–1 Network and Reverse Diabetic Kidney Disease. Journal of the American Society of Nephrology: JASN, 2018, 29, 1437-1448.	6.1	48
16	NADPH Oxidase Inhibition: Preclinical and Clinical Studies in Diabetic Complications. Antioxidants and Redox Signaling, 2020, 33, 415-434.	5.4	41
17	The role of NADPH Oxidase in Vascular Disease – Hypertension, Atherosclerosis & Stroke. Current Pharmaceutical Design, 2015, 21, 5933-5944.	1.9	41
18	Targeting oxidative stress and anti-oxidant defence in diabetic kidney disease. Journal of Nephrology, 2020, 33, 917-929.	2.0	38

KARIN AGNES MARIA

#	Article	IF	CITATIONS
19	Inhibitors of Advanced Glycation End Product (AGE) Formation and Accumulation. Handbook of Experimental Pharmacology, 2020, 264, 395-423.	1.8	30
20	A physician-initiated double-blind, randomised, placebo-controlled, phase 2 study evaluating the efficacy and safety of inhibition of NADPH oxidase with the first-in-class Nox-1/4 inhibitor, GKT137831, in adults with type 1 diabetes and persistently elevated urinary albumin excretion: Protocol and statistical considerations. Contemporary Clinical Trials, 2020, 90, 105892.	1.8	29
21	Endothelial or vascular smooth muscle cell-specific expression of human NOX5 exacerbates renal inflammation, fibrosis and albuminuria in the Akita mouse. Diabetologia, 2019, 62, 1712-1726.	6.3	27
22	Adverse renal effects of NLRP3 inflammasome inhibition by MCC950 in an interventional model of diabetic kidney disease. Clinical Science, 2022, 136, 167-180.	4.3	23
23	Metabolic Karma—The Atherogenic Legacy of Diabetes: The 2017 Edwin Bierman Award Lecture. Diabetes, 2018, 67, 785-790.	0.6	22
24	Sodiumâ€Glucose Coâ€Transporter 2 (SGLT2) Inhibitor Dapagliflozin Stabilizes Diabetesâ€Induced Atherosclerotic Plaque Instability. Journal of the American Heart Association, 2022, 11, e022761.	3.7	22
25	Oral Supplementation of an Alkylglycerol Mix Comprising Different Alkyl Chains Effectively Modulates Multiple Endogenous Plasmalogen Species in Mice. Metabolites, 2021, 11, 299.	2.9	16
26	Independent of Renox, NOX5 Promotes Renal Inflammation and Fibrosis in Diabetes by Activating ROS-Sensitive Pathways. Diabetes, 2022, 71, 1282-1298.	0.6	14
27	Evaluating the efficacy and safety of GKT137831 in adults with type 1 diabetes and persistently elevated urinary albumin excretion: a statistical analysis plan. Trials, 2020, 21, 459.	1.6	12
28	Biomarkers of Inflammation and Glomerular Filtration Rate in Individuals with Recent-Onset Type 1 and Type 2 Diabetes. Journal of Clinical Endocrinology and Metabolism, 2020, 105, e4370-e4381.	3.6	11
29	Renal Replacement Therapy in People With and Without Diabetes in Germany, 2010–2016: An Analysis of More Than 25 Million Inhabitants. Diabetes Care, 2021, 44, 1291-1299.	8.6	9
30	Targeted deletion of nicotinamide adenine dinucleotide phosphate oxidase 4Âfrom proximal tubules is dispensable for diabetic kidney disease development. Nephrology Dialysis Transplantation, 2021, 36, 988-997.	0.7	9
31	Diabetic Kidney Disease: From Pathogenesis to Novel Treatment Possibilities. Handbook of Experimental Pharmacology, 2022, , 269-307.	1.8	4
32	Endothelin in diabetes-associated atherosclerosis: opportunity â€~NOX'. Cardiovascular Research, 2021, 117, 987-989.	3.8	3
33	Modulation of Oxidative Stress in Cardiovascular Diseases. , 2019, , 237-253.		3