Apostolos Polykratis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/823067/publications.pdf

Version: 2024-02-01

14 papers 1,936 citations

623734 14 h-index 14 g-index

14 all docs

14 docs citations

14 times ranked 2986 citing authors

#	Article	IF	Citations
1	A20 prevents inflammasome-dependent arthritis by inhibiting macrophage necroptosis through its ZnF7 ubiquitin-binding domain. Nature Cell Biology, 2019, 21, 731-742.	10.3	122
2	Innate Sensing through Mesenchymal TLR4/MyD88 Signals Promotes Spontaneous Intestinal Tumorigenesis. Cell Reports, 2019, 26, 536-545.e4.	6.4	38
3	Differential role of MyD88 and TRIF signaling in myeloid cells in the pathogenesis of autoimmune diabetes. PLoS ONE, 2018, 13, e0194048.	2.5	18
4	Kinase Activities of RIPK1 and RIPK3 Can Direct IFN-Î ² Synthesis Induced by Lipopolysaccharide. Journal of Immunology, 2017, 198, 4435-4447.	0.8	51
5	Kinase-independent functions of RIPK1 regulate hepatocyte survival and liver carcinogenesis. Journal of Clinical Investigation, 2017, 127, 2662-2677.	8.2	31
6	RIPK1 and RIPK3 Kinases Promote Cell-Death-Independent Inflammation by Toll-like Receptor 4. Immunity, 2016, 45, 46-59.	14.3	228
7	RIPK1 counteracts ZBP1-mediated necroptosis to inhibit inflammation. Nature, 2016, 540, 124-128.	27.8	280
8	NEMO Prevents RIP Kinase 1-Mediated Epithelial Cell Death and Chronic Intestinal Inflammation by NF-κB-Dependent and -Independent Functions. Immunity, 2016, 44, 553-567.	14.3	157
9	TLR-independent anti-inflammatory function of intestinal epithelial TRAF6 signalling prevents DSS-induced colitis in mice. Gut, 2016, 65, 935-943.	12.1	92
10	NEMO Prevents Steatohepatitis and Hepatocellular Carcinoma by Inhibiting RIPK1 Kinase Activity-Mediated Hepatocyte Apoptosis. Cancer Cell, 2015, 28, 582-598.	16.8	98
11	Hematopoietic RIPK1 deficiency results in bone marrow failure caused by apoptosis and RIPK3-mediated necroptosis. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 14436-14441.	7.1	83
12	Cutting Edge: RIPK1 Kinase Inactive Mice Are Viable and Protected from TNF-Induced Necroptosis In Vivo. Journal of Immunology, 2014, 193, 1539-1543.	0.8	256
13	RIPK1 maintains epithelial homeostasis by inhibiting apoptosis and necroptosis. Nature, 2014, 513, 90-94.	27.8	439
14	Conditional Targeting of Tumor Necrosis Factor Receptor–Associated Factor 6 Reveals Opposing Functions of Toll-Like Receptor Signaling in Endothelial and Myeloid Cells in a Mouse Model of Atherosclerosis. Circulation, 2012, 126, 1739-1751.	1.6	43