Fariborz Kargar

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/8230564/fariborz-kargar-publications-by-year.pdf

Version: 2024-04-23

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

19 41 1,314 35 h-index g-index citations papers 8.2 5.09 47 1,744 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
41	Efficient terahertz radiation absorption by dilute graphene composites. <i>Applied Physics Letters</i> , 2022 , 120, 063104	3.4	3
40	Excess noise in high-current diamond diodes. <i>Applied Physics Letters</i> , 2022 , 120, 062103	3.4	5
39	Low-frequency noise characteristics of GaN vertical PIN diodesEffects of design, current, and temperature. <i>Applied Physics Letters</i> , 2021 , 119, 243505	3.4	3
38	Specifics of Thermal Transport in Graphene Composites: Effect of Lateral Dimensions of Graphene Fillers. ACS Applied Materials & amp; Interfaces, 2021,	9.5	9
37	Evidence for a thermally driven charge-density-wave transition in 1T-TaS2 thin-film devices: Prospects for GHz switching speed. <i>Applied Physics Letters</i> , 2021 , 118, 093102	3.4	5
36	Electromagnetic-Polarization-Selective Composites with Quasi-1D Van der Waals Fillers: Nanoscale Material Functionality That Mimics Macroscopic Systems. <i>ACS Applied Materials & amp; Interfaces</i> , 2021 , 13, 21527-21533	9.5	4
35	Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. <i>Applied Physics Letters</i> , 2021 , 118, 223101	3.4	5
34	Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance. <i>Nanomaterials</i> , 2021 , 11,	5.4	7
33	Advances in BrillouinMandelstam light-scattering spectroscopy. <i>Nature Photonics</i> , 2021 , 15, 720-731	33.9	13
32	Electrically Insulating Flexible Films with Quasi-1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Sub-THz Frequency Bands. <i>Advanced Materials</i> , 2021 , 33, e2007	72 86	22
31	Printed Electronic Devices with Inks of TiS Quasi-One-Dimensional van der Waals Material. <i>ACS Applied Materials & Applied & A</i>	9.5	3
30	Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. <i>Nanotechnology</i> , 2021 , 32, 142003	3.4	37
29	Graphene Epoxy-Based Composites as Efficient Electromagnetic Absorbers in the Extremely High-Frequency Band. <i>ACS Applied Materials & Empty Interfaces</i> , 2020 , 12, 28635-28644	9.5	27
28	Power Cycling and Reliability Testing of Epoxy-Based Graphene Thermal Interface Materials. Journal of Carbon Research, 2020 , 6, 26	3.3	15
27	Noncuring Graphene Thermal Interface Materials for Advanced Electronics. <i>Advanced Electronic Materials</i> , 2020 , 6, 1901303	6.4	46
26	Brillouin-Mandelstam spectroscopy of stress-modulated spatially confined spin waves in Ni thin films on piezoelectric substrates. <i>Journal of Magnetism and Magnetic Materials</i> , 2020 , 501, 166440	2.8	2
25	Phonon and Thermal Properties of Quasi-Two-Dimensional FePS and MnPS Antiferromagnetic Semiconductors. <i>ACS Nano</i> , 2020 , 14, 2424-2435	16.7	24

(2017-2020)

24	Phononic and photonic properties of shape-engineered silicon nanoscale pillar arrays. <i>Nanotechnology</i> , 2020 , 31, 30LT01	3.4	6
23	Coexistence of Magnetic Orders in Two-Dimensional Magnet Crl. <i>Nano Letters</i> , 2020 , 20, 553-558	11.5	40
22	Non-Curing Thermal Interface Materials with Graphene Fillers for Thermal Management of Concentrated Photovoltaic Solar Cells. <i>Journal of Carbon Research</i> , 2020 , 6, 2	3.3	13
21	Multifunctional Graphene Composites for Electromagnetic Shielding and Thermal Management at Elevated Temperatures. <i>Advanced Electronic Materials</i> , 2020 , 6, 2000520	6.4	33
20	Thermal Properties of the Binary-Filler Hybrid Composites with Graphene and Copper Nanoparticles. <i>Advanced Functional Materials</i> , 2020 , 30, 1904008	15.6	110
19	Bias-Voltage Driven Switching of the Charge-Density-Wave and Normal Metallic Phases in 1T-TaS Thin-Film Devices. <i>ACS Nano</i> , 2019 , 13, 7231-7240	16.7	38
18	Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. <i>Advanced Materials</i> , 2019 , 31, e1903039	24	27
17	Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. <i>Materials Research Express</i> , 2019 , 6, 085325	1.7	76
16	The discrete noise of magnons. <i>Applied Physics Letters</i> , 2019 , 114, 090601	3.4	10
15	Low-frequency noise spectroscopy of charge-density-wave phase transitions in vertical quasi-2D 1T-TaS2 devices. <i>Applied Physics Express</i> , 2019 , 12, 037001	2.4	19
14	Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices. <i>Nanoscale</i> , 2019 , 11, 8380-8386	7.7	22
13	Strong Hot Carrier Effects in Single Nanowire Heterostructures. <i>Nano Letters</i> , 2019 , 19, 5062-5069	11.5	8
12	Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. <i>Nanoscale</i> , 2019 , 11, 20171-20178	7.7	7
11	Dual-Functional Graphene Composites for Electromagnetic Shielding and Thermal Management. <i>Advanced Electronic Materials</i> , 2019 , 5, 1800558	6.4	133
10	Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide. <i>AIP Advances</i> , 2018 , 8, 056017	1.5	3
9	Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. <i>ACS Applied Materials & Composites amp; Interfaces</i> , 2018 , 10, 37555-37565	9.5	173
8	Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms. <i>Applied Physics Letters</i> , 2018 , 112, 191902	3.4	13
7	Variable-temperature inelastic light scattering spectroscopy of nickel oxide: Disentangling phonons and magnons. <i>Applied Physics Letters</i> , 2017 , 110, 202406	3.4	29

6	Spin-phonon coupling in antiferromagnetic nickel oxide. <i>Applied Physics Letters</i> , 2017 , 111, 252402	3.4	70
5	Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. <i>Nature Communications</i> , 2016 , 7, 13400	17.4	51
4	Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. <i>Materials and Design</i> , 2015 , 88, 214-221	8.1	141
3	Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. <i>Applied Physics Letters</i> , 2015 , 107, 171904	3.4	32
2	A comparative study of the thermal interface materials with graphene and boron nitride fillers 2014 ,		5
1	Low-Frequency Electronic Noise in Quasi-2D van der Waals Antiferromagnetic Semiconductor FePS3Bignatures of Phase Transitions. <i>Advanced Electronic Materials</i> ,2100408	6.4	9