
Fariborz Kargar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/8230564/publications.pdf Version: 2024-02-01

FADIRODZ KADCAD

#	Article	IF	CITATIONS
1	Thermal Percolation Threshold and Thermal Properties of Composites with High Loading of Graphene and Boron Nitride Fillers. ACS Applied Materials & Interfaces, 2018, 10, 37555-37565.	4.0	243
2	Dualâ€Functional Graphene Composites for Electromagnetic Shielding and Thermal Management. Advanced Electronic Materials, 2019, 5, 1800558.	2.6	183
3	Thermal Properties of the Binaryâ€Filler Hybrid Composites with Graphene and Copper Nanoparticles. Advanced Functional Materials, 2020, 30, 1904008.	7.8	179
4	Magnetically-functionalized self-aligning graphene fillers for high-efficiency thermal management applications. Materials and Design, 2015, 88, 214-221.	3.3	166
5	Spin-phonon coupling in antiferromagnetic nickel oxide. Applied Physics Letters, 2017, 111, .	1.5	109
6	Thermal and electrical conductivity control in hybrid composites with graphene and boron nitride fillers. Materials Research Express, 2019, 6, 085325.	0.8	101
7	Multifunctional Graphene Composites for Electromagnetic Shielding and Thermal Management at Elevated Temperatures. Advanced Electronic Materials, 2020, 6, 2000520.	2.6	78
8	Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications. Nanotechnology, 2021, 32, 142003.	1.3	76
9	Coexistence of Magnetic Orders in Two-Dimensional Magnet Crl ₃ . Nano Letters, 2020, 20, 553-558.	4.5	74
10	Noncuring Graphene Thermal Interface Materials for Advanced Electronics. Advanced Electronic Materials, 2020, 6, 1901303.	2.6	72
11	Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires. Nature Communications, 2016, 7, 13400.	5.8	71
12	Phonon and Thermal Properties of Quasi-Two-Dimensional FePS ₃ and MnPS ₃ Antiferromagnetic Semiconductors. ACS Nano, 2020, 14, 2424-2435.	7.3	58
13	Bias-Voltage Driven Switching of the Charge-Density-Wave and Normal Metallic Phases in 1T-TaS ₂ Thin-Film Devices. ACS Nano, 2019, 13, 7231-7240.	7.3	57
14	Graphene Epoxy-Based Composites as Efficient Electromagnetic Absorbers in the Extremely High-Frequency Band. ACS Applied Materials & Interfaces, 2020, 12, 28635-28644.	4.0	53
15	Electrically Insulating Flexible Films with Quasiâ€1D van der Waals Fillers as Efficient Electromagnetic Shields in the GHz and Subâ€THz Frequency Bands. Advanced Materials, 2021, 33, e2007286.	11.1	51
16	Ultrastiff, Strong, and Highly Thermally Conductive Crystalline Graphitic Films with Mixed Stacking Order. Advanced Materials, 2019, 31, e1903039.	11.1	49
17	One-dimensional van der Waals quantum materials. Materials Today, 2022, 55, 74-91.	8.3	49
18	Advances in Brillouin–Mandelstam light-scattering spectroscopy. Nature Photonics, 2021, 15, 720-731.	15.6	42

FARIBORZ KARGAR

#	Article	IF	CITATIONS
19	Variable-temperature inelastic light scattering spectroscopy of nickel oxide: Disentangling phonons and magnons. Applied Physics Letters, 2017, 110, .	1.5	37
20	Acoustic phonon spectrum and thermal transport in nanoporous alumina arrays. Applied Physics Letters, 2015, 107, .	1.5	35
21	Proton-irradiation-immune electronics implemented with two-dimensional charge-density-wave devices. Nanoscale, 2019, 11, 8380-8386.	2.8	29
22	Low-frequency noise spectroscopy of charge-density-wave phase transitions in vertical quasi-2D 1T-TaS ₂ devices. Applied Physics Express, 2019, 12, 037001.	1.1	27
23	Specifics of Thermal Transport in Graphene Composites: Effect of Lateral Dimensions of Graphene Fillers. ACS Applied Materials & Interfaces, 2021, 13, 53073-53082.	4.0	26
24	Power Cycling and Reliability Testing of Epoxy-Based Graphene Thermal Interface Materials. Journal of Carbon Research, 2020, 6, 26.	1.4	18
25	Lowâ€Frequency Electronic Noise in Quasiâ€2D van der Waals Antiferromagnetic Semiconductor FePS ₃ —Signatures of Phase Transitions. Advanced Electronic Materials, 2021, 7, 2100408.	2.6	18
26	Acoustic phonon spectrum engineering in bulk crystals via incorporation of dopant atoms. Applied Physics Letters, 2018, 112, .	1.5	17
27	Noncured Graphene Thermal Interface Materials for High-Power Electronics: Minimizing the Thermal Contact Resistance. Nanomaterials, 2021, 11, 1699.	1.9	17
28	Non-Curing Thermal Interface Materials with Graphene Fillers for Thermal Management of Concentrated Photovoltaic Solar Cells. Journal of Carbon Research, 2020, 6, 2.	1.4	16
29	Evidence for a thermally driven charge-density-wave transition in 1T-TaS2 thin-film devices: Prospects for GHz switching speed. Applied Physics Letters, 2021, 118, .	1.5	16
30	The discrete noise of magnons. Applied Physics Letters, 2019, 114, .	1.5	15
31	Low-frequency electronic noise in superlattice and random-packed thin films of colloidal quantum dots. Nanoscale, 2019, 11, 20171-20178.	2.8	15
32	Room temperature depinning of the charge-density waves in quasi-two-dimensional 1T-TaS2 devices. Applied Physics Letters, 2021, 118, .	1.5	15
33	Strong Hot Carrier Effects in Single Nanowire Heterostructures. Nano Letters, 2019, 19, 5062-5069.	4.5	13
	Phonon modes and Raman signatures of <mml:math< td=""><td></td><td></td></mml:math<>		

34

FARIBORZ KARGAR

#	Article	IF	CITATIONS
37	Printed Electronic Devices with Inks of TiS ₃ Quasi-One-Dimensional van der Waals Material. ACS Applied Materials & Interfaces, 2021, 13, 47033-47042.	4.0	12
38	Excess noise in high-current diamond diodes. Applied Physics Letters, 2022, 120, .	1.5	12
39	Metallic <i>vs.</i> semiconducting properties of quasi-one-dimensional tantalum selenide van der Waals nanoribbons. Nanoscale, 2022, 14, 6133-6143.	2.8	10
40	Charge-Density-Wave Thin-Film Devices Printed with Chemically Exfoliated 1T-TaS ₂ Ink. ACS Nano, 2022, 16, 6325-6333.	7.3	9
41	Efficient terahertz radiation absorption by dilute graphene composites. Applied Physics Letters, 2022, 120, .	1.5	7
42	Low-frequency noise characteristics of GaN vertical PIN diodes—Effects of design, current, and temperature. Applied Physics Letters, 2021, 119, .	1.5	7
43	A comparative study of the thermal interface materials with graphene and boron nitride fillers. Proceedings of SPIE, 2014, , .	0.8	5
44	Brillouin-Mandelstam spectroscopy of standing spin waves in a ferrite waveguide. AIP Advances, 2018, 8, .	0.6	5
45	Metallic Transport in Chemical Vapor Deposition ZrTe3 Nanoribbons on a SiO2 Wafer Substrate. Crystal Growth and Design, 0, , .	1.4	4
46	Interaction Between a Low-Temperature Plasma and Graphene: An <i>in situ</i> Raman Thermometry Study. Physical Review Applied, 2021, 15, .	1.5	3
47	Brillouin-Mandelstam spectroscopy of stress-modulated spatially confined spin waves in Ni thin films on piezoelectric substrates. Journal of Magnetism and Magnetic Materials, 2020, 501, 166440.	1.0	2